Author: Daniel S. Brooks
Publisher:
ISBN: 9780262366199
Category : Biological systems
Languages : en
Pages :
Book Description
"This book addresses basic and advanced questions surrounding the idea of levels or organization in the biological sciences"--
Levels of Organization in the Biological Sciences
Author: Daniel S. Brooks
Publisher:
ISBN: 9780262366199
Category : Biological systems
Languages : en
Pages :
Book Description
"This book addresses basic and advanced questions surrounding the idea of levels or organization in the biological sciences"--
Publisher:
ISBN: 9780262366199
Category : Biological systems
Languages : en
Pages :
Book Description
"This book addresses basic and advanced questions surrounding the idea of levels or organization in the biological sciences"--
Biological Computation
Author: Ehud Lamm
Publisher: CRC Press
ISBN: 1420087967
Category : Mathematics
Languages : en
Pages : 332
Book Description
The area of biologically inspired computing, or biological computation, involves the development of new, biologically based techniques for solving difficult computational problems. A unified overview of computer science ideas inspired by biology, Biological Computation presents the most fundamental and significant concepts in this area. In the book
Publisher: CRC Press
ISBN: 1420087967
Category : Mathematics
Languages : en
Pages : 332
Book Description
The area of biologically inspired computing, or biological computation, involves the development of new, biologically based techniques for solving difficult computational problems. A unified overview of computer science ideas inspired by biology, Biological Computation presents the most fundamental and significant concepts in this area. In the book
Biological Series
Author: University of New Mexico
Publisher:
ISBN:
Category : Biology
Languages : en
Pages : 1114
Book Description
Publisher:
ISBN:
Category : Biology
Languages : en
Pages : 1114
Book Description
Evolutionary Causation
Author: Tobias Uller
Publisher: MIT Press
ISBN: 0262039923
Category : Science
Languages : en
Pages : 361
Book Description
A comprehensive treatment of the concept of causation in evolutionary biology that makes clear its central role in both historical and contemporary debates. Most scientific explanations are causal. This is certainly the case in evolutionary biology, which seeks to explain the diversity of life and the adaptive fit between organisms and their surroundings. The nature of causation in evolutionary biology, however, is contentious. How causation is understood shapes the structure of evolutionary theory, and historical and contemporary debates in evolutionary biology have revolved around the nature of causation. Despite its centrality, and differing views on the subject, the major conceptual issues regarding the nature of causation in evolutionary biology are rarely addressed. This volume fills the gap, bringing together biologists and philosophers to offer a comprehensive, interdisciplinary treatment of evolutionary causation. Contributors first address biological motivations for rethinking evolutionary causation, considering the ways in which development, extra-genetic inheritance, and niche construction challenge notions of cause and process in evolution, and describing how alternative representations of evolutionary causation can shed light on a range of evolutionary problems. Contributors then analyze evolutionary causation from a philosophical perspective, considering such topics as causal entanglement, the commingling of organism and environment, and the relationship between causation and information. Contributors John A. Baker, Lynn Chiu, David I. Dayan, Renée A. Duckworth, Marcus W Feldman, Susan A. Foster, Melissa A. Graham, Heikki Helanterä, Kevin N. Laland, Armin P. Moczek, John Odling-Smee, Jun Otsuka, Massimo Pigliucci, Arnaud Pocheville, Arlin Stoltzfus, Karola Stotz, Sonia E. Sultan, Christoph Thies, Tobias Uller, Denis M. Walsh, Richard A. Watson
Publisher: MIT Press
ISBN: 0262039923
Category : Science
Languages : en
Pages : 361
Book Description
A comprehensive treatment of the concept of causation in evolutionary biology that makes clear its central role in both historical and contemporary debates. Most scientific explanations are causal. This is certainly the case in evolutionary biology, which seeks to explain the diversity of life and the adaptive fit between organisms and their surroundings. The nature of causation in evolutionary biology, however, is contentious. How causation is understood shapes the structure of evolutionary theory, and historical and contemporary debates in evolutionary biology have revolved around the nature of causation. Despite its centrality, and differing views on the subject, the major conceptual issues regarding the nature of causation in evolutionary biology are rarely addressed. This volume fills the gap, bringing together biologists and philosophers to offer a comprehensive, interdisciplinary treatment of evolutionary causation. Contributors first address biological motivations for rethinking evolutionary causation, considering the ways in which development, extra-genetic inheritance, and niche construction challenge notions of cause and process in evolution, and describing how alternative representations of evolutionary causation can shed light on a range of evolutionary problems. Contributors then analyze evolutionary causation from a philosophical perspective, considering such topics as causal entanglement, the commingling of organism and environment, and the relationship between causation and information. Contributors John A. Baker, Lynn Chiu, David I. Dayan, Renée A. Duckworth, Marcus W Feldman, Susan A. Foster, Melissa A. Graham, Heikki Helanterä, Kevin N. Laland, Armin P. Moczek, John Odling-Smee, Jun Otsuka, Massimo Pigliucci, Arnaud Pocheville, Arlin Stoltzfus, Karola Stotz, Sonia E. Sultan, Christoph Thies, Tobias Uller, Denis M. Walsh, Richard A. Watson
Biological Emergences
Author: Robert G. B. Reid
Publisher: MIT Press
ISBN: 0262264420
Category : Science
Languages : en
Pages : 536
Book Description
A critique of selectionism and the proposal of an alternate theory of emergent evolution that is causally sufficient for evolutionary biology. Natural selection is commonly interpreted as the fundamental mechanism of evolution. Questions about how selection theory can claim to be the all-sufficient explanation of evolution often go unanswered by today's neo-Darwinists, perhaps for fear that any criticism of the evolutionary paradigm will encourage creationists and proponents of intelligent design. In Biological Emergences, Robert Reid argues that natural selection is not the cause of evolution. He writes that the causes of variations, which he refers to as natural experiments, are independent of natural selection; indeed, he suggests, natural selection may get in the way of evolution. Reid proposes an alternative theory to explain how emergent novelties are generated and under what conditions they can overcome the resistance of natural selection. He suggests that what causes innovative variation causes evolution, and that these phenomena are environmental as well as organismal. After an extended critique of selectionism, Reid constructs an emergence theory of evolution, first examining the evidence in three causal arenas of emergent evolution: symbiosis/association, evolutionary physiology/behavior, and developmental evolution. Based on this evidence of causation, he proposes some working hypotheses, examining mechanisms and processes common to all three arenas, and arrives at a theoretical framework that accounts for generative mechanisms and emergent qualities. Without selectionism, Reid argues, evolutionary innovation can more easily be integrated into a general thesis. Finally, Reid proposes a biological synthesis of rapid emergent evolutionary phases and the prolonged, dynamically stable, non-evolutionary phases imposed by natural selection.
Publisher: MIT Press
ISBN: 0262264420
Category : Science
Languages : en
Pages : 536
Book Description
A critique of selectionism and the proposal of an alternate theory of emergent evolution that is causally sufficient for evolutionary biology. Natural selection is commonly interpreted as the fundamental mechanism of evolution. Questions about how selection theory can claim to be the all-sufficient explanation of evolution often go unanswered by today's neo-Darwinists, perhaps for fear that any criticism of the evolutionary paradigm will encourage creationists and proponents of intelligent design. In Biological Emergences, Robert Reid argues that natural selection is not the cause of evolution. He writes that the causes of variations, which he refers to as natural experiments, are independent of natural selection; indeed, he suggests, natural selection may get in the way of evolution. Reid proposes an alternative theory to explain how emergent novelties are generated and under what conditions they can overcome the resistance of natural selection. He suggests that what causes innovative variation causes evolution, and that these phenomena are environmental as well as organismal. After an extended critique of selectionism, Reid constructs an emergence theory of evolution, first examining the evidence in three causal arenas of emergent evolution: symbiosis/association, evolutionary physiology/behavior, and developmental evolution. Based on this evidence of causation, he proposes some working hypotheses, examining mechanisms and processes common to all three arenas, and arrives at a theoretical framework that accounts for generative mechanisms and emergent qualities. Without selectionism, Reid argues, evolutionary innovation can more easily be integrated into a general thesis. Finally, Reid proposes a biological synthesis of rapid emergent evolutionary phases and the prolonged, dynamically stable, non-evolutionary phases imposed by natural selection.
Modelling Biological Populations in Space and Time
Author: Eric Renshaw
Publisher: Cambridge University Press
ISBN: 9780521448550
Category : Mathematics
Languages : en
Pages : 428
Book Description
This volume develops a unifying approach to population studies, emphasising the interplay between modelling and experimentation. Throughout, mathematicians and biologists are provided with a framework within which population dynamics can be fully explored and understood. Aspects of population dynamics covered include birth-death and logistic processes, competition and predator-prey relationships, chaos, reaction time-delays, fluctuating environments, spatial systems, velocities of spread, epidemics, and spatial branching structures. Both deterministic and stochastic models are considered. Whilst the more theoretically orientated sections will appeal to mathematical biologists, the material is presented so that readers with little mathematical expertise can bypass these without losing the main flow of the text.
Publisher: Cambridge University Press
ISBN: 9780521448550
Category : Mathematics
Languages : en
Pages : 428
Book Description
This volume develops a unifying approach to population studies, emphasising the interplay between modelling and experimentation. Throughout, mathematicians and biologists are provided with a framework within which population dynamics can be fully explored and understood. Aspects of population dynamics covered include birth-death and logistic processes, competition and predator-prey relationships, chaos, reaction time-delays, fluctuating environments, spatial systems, velocities of spread, epidemics, and spatial branching structures. Both deterministic and stochastic models are considered. Whilst the more theoretically orientated sections will appeal to mathematical biologists, the material is presented so that readers with little mathematical expertise can bypass these without losing the main flow of the text.
Dynamics of Biological Systems
Author: Michael Small
Publisher: CRC Press
ISBN: 1439853363
Category : Mathematics
Languages : en
Pages : 286
Book Description
From the spontaneous rapid firing of cortical neurons to the spatial diffusion of disease epidemics, biological systems exhibit rich dynamic behaviour over a vast range of time and space scales. Unifying many of these diverse phenomena, Dynamics of Biological Systems provides the computational and mathematical platform from which to understand the underlying processes of the phenomena. Through an extensive tour of various biological systems, the text introduces computational methods for simulating spatial diffusion processes in excitable media, such as the human heart, as well as mathematical tools for dealing with systems of nonlinear ordinary and partial differential equations, such as neuronal activation and disease diffusion. The mathematical models and computer simulations offer insight into the dynamics of temporal and spatial biological systems, including cardiac pacemakers, artificial electrical defibrillation, pandemics, pattern formation, flocking behaviour, the interaction of autonomous agents, and hierarchical and structured network topologies. Tools from complex systems and complex networks are also presented for dealing with real phenomenological systems. With exercises and projects in each chapter, this classroom-tested text shows students how to apply a variety of mathematical and computational techniques to model and analyze the temporal and spatial phenomena of biological systems. MATLAB® implementations of algorithms and case studies are available on the author’s website.
Publisher: CRC Press
ISBN: 1439853363
Category : Mathematics
Languages : en
Pages : 286
Book Description
From the spontaneous rapid firing of cortical neurons to the spatial diffusion of disease epidemics, biological systems exhibit rich dynamic behaviour over a vast range of time and space scales. Unifying many of these diverse phenomena, Dynamics of Biological Systems provides the computational and mathematical platform from which to understand the underlying processes of the phenomena. Through an extensive tour of various biological systems, the text introduces computational methods for simulating spatial diffusion processes in excitable media, such as the human heart, as well as mathematical tools for dealing with systems of nonlinear ordinary and partial differential equations, such as neuronal activation and disease diffusion. The mathematical models and computer simulations offer insight into the dynamics of temporal and spatial biological systems, including cardiac pacemakers, artificial electrical defibrillation, pandemics, pattern formation, flocking behaviour, the interaction of autonomous agents, and hierarchical and structured network topologies. Tools from complex systems and complex networks are also presented for dealing with real phenomenological systems. With exercises and projects in each chapter, this classroom-tested text shows students how to apply a variety of mathematical and computational techniques to model and analyze the temporal and spatial phenomena of biological systems. MATLAB® implementations of algorithms and case studies are available on the author’s website.
Skin
Author: P. F. Millington
Publisher: Cambridge University Press
ISBN: 9780521241229
Category : Medical
Languages : en
Pages : 250
Book Description
First published in 1983 this book provides a review of the fundamentals of the biology and mechanics of human skin. The major theme is the interaction between and dependence of the integrity of skin on, cell turnover, nutrition, control mechanisms and disease. Mechanical, thermal and electrical properties are presented separately in a way that should allow the mathematically inexperienced reader to understand the principles but with sufficient detail to permit development of more advanced ideas. Discussion of environmental effects on skin includes cosmetics, solar radiation and clinical treatments. An account of methods of wound closure and of the recent attempts to find a substitute for skin completes an overview of this fascinating tissue.
Publisher: Cambridge University Press
ISBN: 9780521241229
Category : Medical
Languages : en
Pages : 250
Book Description
First published in 1983 this book provides a review of the fundamentals of the biology and mechanics of human skin. The major theme is the interaction between and dependence of the integrity of skin on, cell turnover, nutrition, control mechanisms and disease. Mechanical, thermal and electrical properties are presented separately in a way that should allow the mathematically inexperienced reader to understand the principles but with sufficient detail to permit development of more advanced ideas. Discussion of environmental effects on skin includes cosmetics, solar radiation and clinical treatments. An account of methods of wound closure and of the recent attempts to find a substitute for skin completes an overview of this fascinating tissue.
University of Toronto Biological Series
Author:
Publisher:
ISBN:
Category : Biology
Languages : en
Pages : 558
Book Description
Publisher:
ISBN:
Category : Biology
Languages : en
Pages : 558
Book Description
Biological Invasions
Author: M. Williamson
Publisher: Springer Science & Business Media
ISBN: 0412591901
Category : Science
Languages : en
Pages : 268
Book Description
Some biological invasions have marked ecological and economic effects. But most fail, and most of those that succeed have small effects. This volume should be of interest to plant ecologists, plant conservationists, population biologists, agriculturalists
Publisher: Springer Science & Business Media
ISBN: 0412591901
Category : Science
Languages : en
Pages : 268
Book Description
Some biological invasions have marked ecological and economic effects. But most fail, and most of those that succeed have small effects. This volume should be of interest to plant ecologists, plant conservationists, population biologists, agriculturalists