Bioinorganic Spectroscopy, Structure/function Correlations in Binuclear Non-heme Iron Enzymes, and Developing Nuclear Resonance Vibrational Spectroscopy for Characterization of Enzyme Intermediates

Bioinorganic Spectroscopy, Structure/function Correlations in Binuclear Non-heme Iron Enzymes, and Developing Nuclear Resonance Vibrational Spectroscopy for Characterization of Enzyme Intermediates PDF Author: Caleb Branson Bell
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The foci of this dissertation are: 1) combined use of spectroscopies for mechanistic understanding of the oxygen reactions of various non-heme iron enzymes and related model complexes, and 2) the development of the recently described nuclear vibrational resonance spectroscopy (NRVS) coupled with density functional calculations (DFT) for characterization of non-heme iron enzyme intermediates. Binuclear non-heme iron enzymes are involved in many medically and industrially important processes such as DNA synthesis by ribonucleotide reductase (RNR), conversion of methane to methanol by methane monooxygenase (MMO), fatty acid desaturation by [Delta]9 desaturase, iron storage and homeostasis by ferritins, degradation of aromatic compounds by various bacterial monooxygenases (ToMO, T4MO, etc.) and antibiotic biogenesis by p-aminobenzoate N-oxygenase (AurF), etc. Interestingly, these diverse reactions typically begin with O2 reacting with a biferrous active site, coordinated by highly conserved protein ligands (ExxH motifs) in four [Alpha]-helix bundles. Moreover, spectroscopically and chemically similar intermediates can be detected in many of the enzyme systems. The best studied in this family are RNRs, where biferric peroxo intermediates (P and P'), and the high-valent Fe(III)Fe(IV) intermediate X have been stabilized and spectroscopically characterized in wt and numerous variants. De novo designed four [Alpha]-helix bundles have been synthesized (the ~140 amino acid dui ferri (DF) peptide family) and are good models for binuclear non-heme iron enzymes. These systems provide a protein environment and can be viewed as a bridge between inorganic model complexes and native proteins. The pseudo-symmetric single chain version (DFsc) coordinates two ferrous ions by two His and four Glu amino acid residues. Circular dichroism (CD), magnetic CD (MCD) and variable-temperature variable-field MCD (VTVH MCD) show that this "active site" in DFsc has a 4-coordinate and 5-coordinate (4C+5C) geometry that is weakly antiferromagnetically coupled (J [approximately equal to] --2 cm-1) indicative of [Mu]1,3 carboxylate bridges, highly similar to RNR biferrous structures. Extended x-ray absorption fine structure (EXAFS) data are consistent with this assignment and show that one terminal carboxylate residue coordinates in a bidentate fashion. Changes in the CD/MCD/VTVH MCD and EXAFS spectra in the Y51L and E11D variants show that the 4C site is proximal to (but not bound by) Y51 and the bidentate carboxylate is coordinated to the 5C iron. Open coordination positions on both irons allow for dioxygen to react rapidly with the biferrous site. The reaction of biferrous DFsc with dioxygen yields a 520 nm ([Epsilon] = [weak approximation to]1200 M-1cm-1) species with a formation rate of 2 s-1, again similar to RNR (the Class Ia RNR from Escherichia coli has a dioxygen reaction rate of ~1 s-1, however the first species formed (intermediate P) has [Lambda]max = 700 nm). The resonance Raman (rR) spectrum obtained by excitation into the 520 nm feature in DFsc (and the E11D variant) proves this chromophore arises from a Tyr to ferric charge transfer (CT) transition. The 520 nm feature is lost by substitution of Y51 but not Y18, thus Y51 binds to the site after reaction with dioxygen. Subsequent binding of Y51 functions as an internal spectral probe of the dioxygen reaction and as a proton source that would promote loss of hydrogen peroxide. Coordination by a ligand that functions as a proton source could be a structural mechanism used by natural binuclear iron enzymes to drive their reactions past peroxo biferric level intermediates. RNR's can be divided into 3 major classes based on the radical generating machinery. Class I RNR's utilize a dimetal cofactor that reacts with dioxygen and can be subdivided into Classes Ia, Ib and Ic based on sequence homology and metal dependency. Class Ia enzymes are the best studied an present in higher organisms including human (host) while Class Ib enzymes are typically found in pathogens. CD, MCD and VTVH MCD data on biferrous loaded Class Ib RNR from Bacillus cereus allow assignment of the active site as 4C+5C in solution, resolving discrepancies from available crystal structures. Differences in the zero-field splitting parameters (D and E) and magnetic coupling extracted from fits to the VTVH MCD data can be ascribed to differences in the bridging carboxylate conformations. FeII loading, monitored by CD, shows cooperative binding with Kd 100 mM, significantly stronger that the metal binding in Class Ia. This provides the pathogen a competitive advantage relative to host in physiological, iron-limited environments Returning to Class Ia, the recently discovered intermediate P' notably lacks structural definition. This is mainly due to the lack of spectroscopic handles from which to obtain the needed experimental data. What is know, however, is that this species directly forms intermediate X and is directly derived from the well-defined intermediate P. Spectroscopically, P' has Mössbauer isomer shifts ([lowercase Delta] = 0.52 and 0.45 mm/s) that are significantly lower than the cis-[Mu]1,2 peroxo P ([lowercase Delta] = 0.63 mm/s) and lacks the ~700 nm peroxo to ferric CT suggesting some change in coordination mode or protonation may be involved in P -- P'. Comparisons of the reduced and oxidized crystal structures show differences in carboxylate coordination modes and water binding that must occur at some stage along the reaction coordinate. All of these potential structural perturbations were systematically incorporated into computational models of the intermediate site and correlated with experimental data using density functional theory (DFT). Two potential reaction pathways consistent with available experimental data were found. The first involves water addition to Fe1 of the cis-[Mu]-1,2 peroxo intermediate P causing opening of a bridging carboxylate to form intermediate P' which has an increased electron affinity and is activated for proton-coupled electron transfer to form the Fe(III)Fe(IV) intermediate X. While the second, more energetically favorable pathway, involves addition of a proton to a terminal carboxylate ligand in the site which increases the electron affinity and triggers electron transfer to form X. Vibrational characterization could, in principle, distinguish these pathways. However, the lack of a reasonably intense chromophore precludes rR experiments. The recently available method of nuclear vibrational resonance spectroscopy (NRVS) does not have these chromophoric constraints and can provide the needed vibrational data for P'--and many other "spectroscopically challenged" intermediates in non-heme iron biochemistry. The vibrations enhanced in NRVS are typically lower in energy and differ from those observed in rR, thus studies on well defined model complexes are needed prior to intermediate studies. A series of mononuclear Fe(IV)=O have been characterized by NRVS coupled with DFT calculations to define NRVS spectral assignments and set a foundation for vibrational characterization of non-heme iron enzyme intermediates. These studies show that the NRVS spectrum is rich in structural information. Of the four Fe(IV)=O models, supported by the 1, 4, 8, 11-tetramethyl-1,4,8,11-tetraazacyclotetradecane (TMC); N, N-bis(2-pyridylmethyl)-N-bis(2-pyridyl) methylamine (N4Py); N-benzyl-N, N', N'-tris(2-pyridylmethyl)-1,2-diaminoethane (BnTPEN); and 1,1,1-tris{2-[N(2)-(1,1,3,3-tetramethylguanidino)]ethyl}amine (TMG3tren) ligand sets, only the trigional bipyramidal geometry (relative to the 6C approximatly C4v geometry of TMC, N4Py and BnTPEN) enforced by the TMG3tren ligand affords a high-spin species. Isotope sensitive Fe-O stretches are observed for all complexes at 820 to 831 cm-1. However, at lower energy (

Bioinorganic Spectroscopy, Structure/function Correlations in Binuclear Non-heme Iron Enzymes, and Developing Nuclear Resonance Vibrational Spectroscopy for Characterization of Enzyme Intermediates

Bioinorganic Spectroscopy, Structure/function Correlations in Binuclear Non-heme Iron Enzymes, and Developing Nuclear Resonance Vibrational Spectroscopy for Characterization of Enzyme Intermediates PDF Author: Caleb Branson Bell
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The foci of this dissertation are: 1) combined use of spectroscopies for mechanistic understanding of the oxygen reactions of various non-heme iron enzymes and related model complexes, and 2) the development of the recently described nuclear vibrational resonance spectroscopy (NRVS) coupled with density functional calculations (DFT) for characterization of non-heme iron enzyme intermediates. Binuclear non-heme iron enzymes are involved in many medically and industrially important processes such as DNA synthesis by ribonucleotide reductase (RNR), conversion of methane to methanol by methane monooxygenase (MMO), fatty acid desaturation by [Delta]9 desaturase, iron storage and homeostasis by ferritins, degradation of aromatic compounds by various bacterial monooxygenases (ToMO, T4MO, etc.) and antibiotic biogenesis by p-aminobenzoate N-oxygenase (AurF), etc. Interestingly, these diverse reactions typically begin with O2 reacting with a biferrous active site, coordinated by highly conserved protein ligands (ExxH motifs) in four [Alpha]-helix bundles. Moreover, spectroscopically and chemically similar intermediates can be detected in many of the enzyme systems. The best studied in this family are RNRs, where biferric peroxo intermediates (P and P'), and the high-valent Fe(III)Fe(IV) intermediate X have been stabilized and spectroscopically characterized in wt and numerous variants. De novo designed four [Alpha]-helix bundles have been synthesized (the ~140 amino acid dui ferri (DF) peptide family) and are good models for binuclear non-heme iron enzymes. These systems provide a protein environment and can be viewed as a bridge between inorganic model complexes and native proteins. The pseudo-symmetric single chain version (DFsc) coordinates two ferrous ions by two His and four Glu amino acid residues. Circular dichroism (CD), magnetic CD (MCD) and variable-temperature variable-field MCD (VTVH MCD) show that this "active site" in DFsc has a 4-coordinate and 5-coordinate (4C+5C) geometry that is weakly antiferromagnetically coupled (J [approximately equal to] --2 cm-1) indicative of [Mu]1,3 carboxylate bridges, highly similar to RNR biferrous structures. Extended x-ray absorption fine structure (EXAFS) data are consistent with this assignment and show that one terminal carboxylate residue coordinates in a bidentate fashion. Changes in the CD/MCD/VTVH MCD and EXAFS spectra in the Y51L and E11D variants show that the 4C site is proximal to (but not bound by) Y51 and the bidentate carboxylate is coordinated to the 5C iron. Open coordination positions on both irons allow for dioxygen to react rapidly with the biferrous site. The reaction of biferrous DFsc with dioxygen yields a 520 nm ([Epsilon] = [weak approximation to]1200 M-1cm-1) species with a formation rate of 2 s-1, again similar to RNR (the Class Ia RNR from Escherichia coli has a dioxygen reaction rate of ~1 s-1, however the first species formed (intermediate P) has [Lambda]max = 700 nm). The resonance Raman (rR) spectrum obtained by excitation into the 520 nm feature in DFsc (and the E11D variant) proves this chromophore arises from a Tyr to ferric charge transfer (CT) transition. The 520 nm feature is lost by substitution of Y51 but not Y18, thus Y51 binds to the site after reaction with dioxygen. Subsequent binding of Y51 functions as an internal spectral probe of the dioxygen reaction and as a proton source that would promote loss of hydrogen peroxide. Coordination by a ligand that functions as a proton source could be a structural mechanism used by natural binuclear iron enzymes to drive their reactions past peroxo biferric level intermediates. RNR's can be divided into 3 major classes based on the radical generating machinery. Class I RNR's utilize a dimetal cofactor that reacts with dioxygen and can be subdivided into Classes Ia, Ib and Ic based on sequence homology and metal dependency. Class Ia enzymes are the best studied an present in higher organisms including human (host) while Class Ib enzymes are typically found in pathogens. CD, MCD and VTVH MCD data on biferrous loaded Class Ib RNR from Bacillus cereus allow assignment of the active site as 4C+5C in solution, resolving discrepancies from available crystal structures. Differences in the zero-field splitting parameters (D and E) and magnetic coupling extracted from fits to the VTVH MCD data can be ascribed to differences in the bridging carboxylate conformations. FeII loading, monitored by CD, shows cooperative binding with Kd 100 mM, significantly stronger that the metal binding in Class Ia. This provides the pathogen a competitive advantage relative to host in physiological, iron-limited environments Returning to Class Ia, the recently discovered intermediate P' notably lacks structural definition. This is mainly due to the lack of spectroscopic handles from which to obtain the needed experimental data. What is know, however, is that this species directly forms intermediate X and is directly derived from the well-defined intermediate P. Spectroscopically, P' has Mössbauer isomer shifts ([lowercase Delta] = 0.52 and 0.45 mm/s) that are significantly lower than the cis-[Mu]1,2 peroxo P ([lowercase Delta] = 0.63 mm/s) and lacks the ~700 nm peroxo to ferric CT suggesting some change in coordination mode or protonation may be involved in P -- P'. Comparisons of the reduced and oxidized crystal structures show differences in carboxylate coordination modes and water binding that must occur at some stage along the reaction coordinate. All of these potential structural perturbations were systematically incorporated into computational models of the intermediate site and correlated with experimental data using density functional theory (DFT). Two potential reaction pathways consistent with available experimental data were found. The first involves water addition to Fe1 of the cis-[Mu]-1,2 peroxo intermediate P causing opening of a bridging carboxylate to form intermediate P' which has an increased electron affinity and is activated for proton-coupled electron transfer to form the Fe(III)Fe(IV) intermediate X. While the second, more energetically favorable pathway, involves addition of a proton to a terminal carboxylate ligand in the site which increases the electron affinity and triggers electron transfer to form X. Vibrational characterization could, in principle, distinguish these pathways. However, the lack of a reasonably intense chromophore precludes rR experiments. The recently available method of nuclear vibrational resonance spectroscopy (NRVS) does not have these chromophoric constraints and can provide the needed vibrational data for P'--and many other "spectroscopically challenged" intermediates in non-heme iron biochemistry. The vibrations enhanced in NRVS are typically lower in energy and differ from those observed in rR, thus studies on well defined model complexes are needed prior to intermediate studies. A series of mononuclear Fe(IV)=O have been characterized by NRVS coupled with DFT calculations to define NRVS spectral assignments and set a foundation for vibrational characterization of non-heme iron enzyme intermediates. These studies show that the NRVS spectrum is rich in structural information. Of the four Fe(IV)=O models, supported by the 1, 4, 8, 11-tetramethyl-1,4,8,11-tetraazacyclotetradecane (TMC); N, N-bis(2-pyridylmethyl)-N-bis(2-pyridyl) methylamine (N4Py); N-benzyl-N, N', N'-tris(2-pyridylmethyl)-1,2-diaminoethane (BnTPEN); and 1,1,1-tris{2-[N(2)-(1,1,3,3-tetramethylguanidino)]ethyl}amine (TMG3tren) ligand sets, only the trigional bipyramidal geometry (relative to the 6C approximatly C4v geometry of TMC, N4Py and BnTPEN) enforced by the TMG3tren ligand affords a high-spin species. Isotope sensitive Fe-O stretches are observed for all complexes at 820 to 831 cm-1. However, at lower energy (

Spectroscopic Characterization of Binuclear Non-heme Iron and MN/FE Active Sites

Spectroscopic Characterization of Binuclear Non-heme Iron and MN/FE Active Sites PDF Author: Yeonju Kwak
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Binuclear non-heme iron enzymes catalyze various reactions including H-atom abstraction, desaturation, hydroxylation, and electrophilic aromatic substitution through O2 activation. In addition, they protect cells from oxidative stress and regulate iron levels in the cell. These enzymes utilize two irons and have common structural motif of 2-His / 4-carboxylate. Despite the enzymes' structural similarities, subtle changes at their active sites allow these enzymes to have different reactivities. Understanding the active site structures of these enzymes and the key mechanistic features related to these structures can provide a basis for potential applications: they could be drug inhibition targets to treat cancer, diabetes, and pathogenic diseases; they could work as biocatalysts; and they could carry out bioremediation reactions. In this dissertation, studies that examine three binuclear non-heme iron and Mn/Fe enzyme active sites (class Ic ribonucleotide reductase, ferritin variants, and bacterioferritin) and peroxo-bridged biferric model complexes are described. A combined spectroscopic methodology of nuclear resonance vibrational spectroscopy (NRVS), circular dichroism (CD), magnetic circular dichroism (MCD), and variable temperature, variable field (VTVH) MCD is used to probe geometric and electronic structures of Mn and Fe centers in protein active site and in model complexes.

Structure/function Correlations of Binuclear Non-heme Iron Enzymes and Their de Novo Models

Structure/function Correlations of Binuclear Non-heme Iron Enzymes and Their de Novo Models PDF Author: Rae Ana Snyder
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Binuclear non-heme iron enzymes are pervasive in nature and catalyze a variety of biologically important reactions, including reactions relevant to the biosynthesis of DNA, fatty acid metabolism, the protection of pathogens from oxidative stress, cell signaling, iron storage, and many others. Elucidating the structures of their diiron active sites and the contributions of these structures to reactivity can provide molecular level insight into catalysis. The near IR circular dichroism (CD), magnetic circular dichroism (MCD), and variable temperature variable field (VTVH) MCD spectroscopies form a powerful methodology that allows for detailed structural understanding of the diiron active sites in these enzymes. Presented are studies that focus on myo-inositol oxygenase, an enzyme with significance to human health, and de novo designed diiron proteins that model native enzymes.

Spectroscopic and Theroretical Definition of Binuclear Non-heme Iron Active Sites

Spectroscopic and Theroretical Definition of Binuclear Non-heme Iron Active Sites PDF Author: Yi-Shan Yang
Publisher:
ISBN:
Category :
Languages : en
Pages : 558

Get Book Here

Book Description


Spectroscopic and Theoretical Elucidation of Structural Contributions to Reactivity in Binuclear Non-heme Iron Enzymes

Spectroscopic and Theoretical Elucidation of Structural Contributions to Reactivity in Binuclear Non-heme Iron Enzymes PDF Author: Jennifer Kathleen Schwartz
Publisher:
ISBN:
Category :
Languages : en
Pages : 568

Get Book Here

Book Description


Spectroscopic and Computational Studies of Peroxo Intermediates in Mononuclear Non-heme Iron Enzymes and Their Model Complexes

Spectroscopic and Computational Studies of Peroxo Intermediates in Mononuclear Non-heme Iron Enzymes and Their Model Complexes PDF Author: Lei Liu
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Mononuclear non-heme iron enzymes catalyze wide varieties of important biological reactions with industrial, medical, and environmental applications. These enzymes can be classified into two classes, O2 activating FeII enzymes and substrate activating FeIII enzymes. This thesis focuses on understanding the geometric and electronic structures of the peroxo level intermediates and their reactivities in two O2 activating FeII enzymes, bleomycin and Rieske dioxygenases related model complexes, by using a combination of spectroscopic and computational methods. Bleomycin is a glycopeptide anticancer drug capable of effecting single- and double-strand DNA cleavage. The last detectable intermediate prior to DNA cleavage is a low spin S = 1/2 FeIII--OOH species, termed activated bleomycin (ABLM). The DNA strand scission is initiated through the abstraction of the C-4' hydrogen atom of the deoxyribose sugar unit. Nuclear resonance vibrational spectroscopy (NRVS) aided by extended X-ray absorption fine structure (EXAFS) spectroscopy and density functional theory (DFT) calculations are applied to define the natures of FeIIIBLM and ABLM as (BLM)FeIII--OH and (BLM)FeIII([eta]1--OOH) species, respectively. The NRVS spectra of FeIIIBLM and ABLM are strikingly different because in ABLM the Fe--O--O bending mode mixes with, and energetically splits, the doubly degenerate, intense O--Fe--Nax trans-axial bends. DFT calculations of the reaction of ABLM with DNA, based on the species defined by the NRVS data, show that the direct H-atom abstraction by ABLM is thermodynamically favored over other proposed reaction pathways. Previously, the rate of ABLM decay had been found, based on indirect methods, to be independent of the presence of DNA. In this thesis, we use a circular dichroism (CD) feature unique to ABLM to directly monitor the kinetics of ABLM reaction with a DNA oligonucleotide. Our results show that the ABLM + DNA reaction is appreciably faster, has a different kinetic isotope effect, and has a lower Arrhenius activation energy than does ABLM decay. In the ABLM reaction with DNA, the small normal kH/kD ratio is attributed to a secondary solvent effect through DFT vibrational analysis of reactant and transition state (TS) frequencies, and the lower Ea is attributed to the weaker bond involved in the abstraction reaction (C--H for DNA and N--H for the decay in the absence of DNA). The DNA dependence of the ABLM reaction indicates that DNA is involved in the TS for ABLM decay and thus reacts directly with (BLM)FeIII([eta]1--OOH) instead of its decay product. Oxygen-containing mononuclear iron species, FeIII--peroxo, FeIII--hydroperoxo and FeIV--oxo, are key intermediates in the catalytic activation of dioxygen by iron-containing metalloenzymes. It has been difficult to generate synthetic analogues of these three active iron--oxygen species in identical host complexes, which is necessary to elucidate changes to the structure of the iron center during catalysis and the factors that control their chemical reactivities with substrates. Here we report the high-resolution crystal structure of a mononuclear non-haem side-on FeIII--peroxo complex, [Fe(III)(TMC)(OO)]+. We also report a series of chemical reactions in which this iron(III)--peroxo complex is cleanly converted to the FeIII--hydroperoxo complex, [Fe(III)(TMC)(OOH)]2+, via a short-lived intermediate on protonation. This iron(III)--hydroperoxo complex then cleanly converts to the ferryl complex, [Fe(IV)(TMC)(O)]2+, via homolytic O--O bond cleavage of the iron(III)--hydroperoxo species. All three of these iron species--the three most biologically relevant iron--oxygen intermediates--have been spectroscopically characterized; we note that they have been obtained using a simple macrocyclic ligand. We have performed relative reactivity studies on these three iron species which reveal that the iron(III)--hydroperoxo complex is the most reactive of the three in the deformylation of aldehydes and that it has a similar reactivity to the iron(IV)--oxo complex in C--H bond activation of alkylaromatics. These reactivity results demonstrate that iron(III)--hydroperoxo species are viable oxidants in both nucleophilic and electrophilic reactions by iron-containing enzymes. The geometric and electronic structure and reactivity of an S = 5/2 (HS) mononuclear non-heme (TMC)FeIII-OOH complex was studied by spectroscopy, calculations, and kinetics for comparison to our past study of an S = 1/2 (LS) FeIII-OOH complex to understand their mechanisms of O-O bond homolysis and electrophilic H-atom abstraction. The homolysis reaction of the HS [(TMC)FeIII-OOH]2+ complex is found to involve axial ligand coordination and a crossing to the LS surface for O-O bond homolysis. Both HS and LS FeIII-OOH complexes are found to perform direct H-atom abstraction reactions but with very different reaction coordinates. For the LS FeIII-OOH, the transition state is late in O-O and early in C-H coordinates. However, for the HS FeIII-OOH, the transition state is early in O-O and further along in the C-H coordinate. In addition, there is a significant amount of electron transfer from substrate to HS FeIII-OOH at transition state, but does not occur in the LS transition state. Thus in contrast to the behavior of LS FeIII-OOH, the H-atom abstraction reactivity of HS FeIII-OOH is found to be highly dependent on both the ionization potential and C-H bond strength of substrate. LS FeIII-OOH is found to be more effective in H-atom abstraction for strong C-H bonds, while the higher reduction potential of HS FeIII-OOH allows it be active in electrophilic reactions without the requirement of O-O cleavage. This is relevant to the Rieske dioxygenases, which are proposed to use a HS FeIII-OOH to catalyze cis-dihydroxylation of a wide range of aromatic compounds. S K-edge XAS is a direct experimental probe of metal ion electronic structure as the pre-edge energy reflects its oxidation state, and the energy splitting pattern of the pre-edge transitions reflects its spin state. The combination of sulfur K-edge XAS and DFT calculations indicates that the electronic structures of {FeNO}7 (S = 3/2) (SMe2N4(tren)Fe(NO), complex I) and {FeNO}7 (S = 1/2) ((bme-daco)Fe(NO), complex II) are FeIII(S=5/2)--NO-- (S = 1) and FeIII(S=3/2)--NO-- (S = 1), respectively. When an axial ligand is computationally added to complex II, the electronic structure becomes FeII(S = 0)--NO[*] (S = 1/2). These studies demonstrate how the ligand field of the Fe center defines its spin state and thus changes the electron exchange, an important factor in determining the electron distribution over {FeNO}7 and {FeO2}8 sites.

2-Oxoglutarate-Dependent Oxygenases

2-Oxoglutarate-Dependent Oxygenases PDF Author: Christopher J Schofield
Publisher: Royal Society of Chemistry
ISBN: 1849739501
Category : Science
Languages : en
Pages : 508

Get Book Here

Book Description
Since the discovery of the first examples of 2-oxoglutarate-dependent oxygenase-catalysed reactions in the 1960s, a remarkably broad diversity of alternate reactions and substrates has been revealed, and extensive advances have been achieved in our understanding of the structures and catalytic mechanisms. These enzymes are important agrochemical targets and are being pursued as therapeutic targets for a wide range of diseases including cancer and anemia. This book provides a central source of information that summarizes the key features of the essential group of 2-oxoglutarate-dependent dioxygenases and related enzymes. Given the numerous recent advances and biomedical interest in the field, this book aims to unite the latest research for those already working in the field as well as to provide an introduction for those newly approaching the topic, and for those interested in translating the basic science into medicinal and agricultural benefits. The book begins with four broad chapters that highlight critical aspects, including an overview of possible catalytic reactions, structures and mechanisms. The following seventeen chapters focus on carefully selected topics, each written by leading experts in the area. Readers will find explanations of rapidly evolving research, from the chemistry of isopenicillin N synthase to the oxidation mechanism of 5-methylcytosine in DNA by ten-eleven-translocase oxygenases.

Investigations of Diatomic Heme Ligands

Investigations of Diatomic Heme Ligands PDF Author: Jeffrey William Pavlik
Publisher:
ISBN:
Category :
Languages : en
Pages : 210

Get Book Here

Book Description


Iron-containing Enzymes

Iron-containing Enzymes PDF Author: Sam P. De Visser
Publisher: Royal Society of Chemistry
ISBN: 1849731810
Category : Science
Languages : en
Pages : 463

Get Book Here

Book Description
Mononuclear iron containing enzymes are important intermediates in bioprocesses and have potential in the industrial biosynthesis of specific products. This book features topical review chapters by leaders in this field and its various sub-disciplines.

Bioinorganic Chemistry of Copper

Bioinorganic Chemistry of Copper PDF Author: K.D. Karlin
Publisher: Springer Science & Business Media
ISBN: 940116875X
Category : Science
Languages : en
Pages : 510

Get Book Here

Book Description
Bioinorganic Chemistry of Copper focuses on the vital role of copper ions in biology, especially as an essential metalloenzyme cofactor. The book is highly interdisciplinary in its approach--the outstanding list of contributors includes coordination chemists, biochemists, biophysicists, and molecular biologists. Chapters are grouped into major areas of research interest in inorganic copper chemistry, spectroscopy, oxygen chemistry, biochemistry, and molecular biology. The book also discusses basic research of great potential importance to pharmaceutical scientists. This book is based on the first Johns Hopkins University Copper Symposium, held in August 1992. Researchers in chemistry, biochemistry, molecular biology, and medicinal chemistry will find it to be an essential reference on its subject.