Bilinear and Trilinear Regression Models with Structured Covariance Matrices

Bilinear and Trilinear Regression Models with Structured Covariance Matrices PDF Author: Joseph Nzabanita
Publisher: Linköping University Electronic Press
ISBN: 9175190702
Category : Matrices
Languages : en
Pages : 51

Get Book Here

Book Description
This thesis focuses on the problem of estimating parameters in bilinear and trilinear regression models in which random errors are normally distributed. In these models the covariance matrix has a Kronecker product structure and some factor matrices may be linearly structured. The interest of considering various structures for the covariance matrices in different statistical models is partly driven by the idea that altering the covariance structure of a parametric model alters the variances of the model’s estimated mean parameters. Firstly, the extended growth curve model with a linearly structured covariance matrix is considered. The main theme is to find explicit estimators for the mean and for the linearly structured covariance matrix. We show how to decompose the residual space, the orthogonal complement to the mean space, into appropriate orthogonal subspaces and how to derive explicit estimators of the covariance matrix from the sum of squared residuals obtained by projecting observations on those subspaces. Also an explicit estimator of the mean is derived and some properties of the proposed estimators are studied. Secondly, we study a bilinear regression model with matrix normally distributed random errors. For those models, the dispersion matrix follows a Kronecker product structure and it can be used, for example, to model data with spatio-temporal relationships. The aim is to estimate the parameters of the model when, in addition, one covariance matrix is assumed to be linearly structured. On the basis of n independent observations from a matrix normal distribution, estimating equations, a flip-flop relation, are established. At last, the models based on normally distributed random third order tensors are studied. These models are useful in analyzing 3-dimensional data arrays. In some studies the analysis is done using the tensor normal model, where the focus is on the estimation of the variance-covariance matrix which has a Kronecker structure. Little attention is paid to the structure of the mean, however, there is a potential to improve the analysis by assuming a structured mean. We formally introduce a 2-fold growth curve model by assuming a trilinear structure for the mean in the tensor normal model and propose an estimation algorithm for parameters. Also some extensions are discussed.

Bilinear and Trilinear Regression Models with Structured Covariance Matrices

Bilinear and Trilinear Regression Models with Structured Covariance Matrices PDF Author: Joseph Nzabanita
Publisher: Linköping University Electronic Press
ISBN: 9175190702
Category : Matrices
Languages : en
Pages : 51

Get Book Here

Book Description
This thesis focuses on the problem of estimating parameters in bilinear and trilinear regression models in which random errors are normally distributed. In these models the covariance matrix has a Kronecker product structure and some factor matrices may be linearly structured. The interest of considering various structures for the covariance matrices in different statistical models is partly driven by the idea that altering the covariance structure of a parametric model alters the variances of the model’s estimated mean parameters. Firstly, the extended growth curve model with a linearly structured covariance matrix is considered. The main theme is to find explicit estimators for the mean and for the linearly structured covariance matrix. We show how to decompose the residual space, the orthogonal complement to the mean space, into appropriate orthogonal subspaces and how to derive explicit estimators of the covariance matrix from the sum of squared residuals obtained by projecting observations on those subspaces. Also an explicit estimator of the mean is derived and some properties of the proposed estimators are studied. Secondly, we study a bilinear regression model with matrix normally distributed random errors. For those models, the dispersion matrix follows a Kronecker product structure and it can be used, for example, to model data with spatio-temporal relationships. The aim is to estimate the parameters of the model when, in addition, one covariance matrix is assumed to be linearly structured. On the basis of n independent observations from a matrix normal distribution, estimating equations, a flip-flop relation, are established. At last, the models based on normally distributed random third order tensors are studied. These models are useful in analyzing 3-dimensional data arrays. In some studies the analysis is done using the tensor normal model, where the focus is on the estimation of the variance-covariance matrix which has a Kronecker structure. Little attention is paid to the structure of the mean, however, there is a potential to improve the analysis by assuming a structured mean. We formally introduce a 2-fold growth curve model by assuming a trilinear structure for the mean in the tensor normal model and propose an estimation algorithm for parameters. Also some extensions are discussed.

Advanced Multivariate Statistics with Matrices

Advanced Multivariate Statistics with Matrices PDF Author: Tõnu Kollo
Publisher: Springer Science & Business Media
ISBN: 1402034199
Category : Mathematics
Languages : en
Pages : 503

Get Book Here

Book Description
The book presents important tools and techniques for treating problems in m- ern multivariate statistics in a systematic way. The ambition is to indicate new directions as well as to present the classical part of multivariate statistical analysis in this framework. The book has been written for graduate students and statis- cians who are not afraid of matrix formalism. The goal is to provide them with a powerful toolkit for their research and to give necessary background and deeper knowledge for further studies in di?erent areas of multivariate statistics. It can also be useful for researchers in applied mathematics and for people working on data analysis and data mining who can ?nd useful methods and ideas for solving their problems. Ithasbeendesignedasatextbookforatwosemestergraduatecourseonmultiva- ate statistics. Such a course has been held at the Swedish Agricultural University in 2001/02. On the other hand, it can be used as material for series of shorter courses. In fact, Chapters 1 and 2 have been used for a graduate course ”Matrices in Statistics” at University of Tartu for the last few years, and Chapters 2 and 3 formed the material for the graduate course ”Multivariate Asymptotic Statistics” in spring 2002. An advanced course ”Multivariate Linear Models” may be based on Chapter 4. A lot of literature is available on multivariate statistical analysis written for di?- ent purposes and for people with di?erent interests, background and knowledge.

Generalized Principal Component Analysis

Generalized Principal Component Analysis PDF Author: René Vidal
Publisher: Springer
ISBN: 0387878114
Category : Science
Languages : en
Pages : 590

Get Book Here

Book Description
This book provides a comprehensive introduction to the latest advances in the mathematical theory and computational tools for modeling high-dimensional data drawn from one or multiple low-dimensional subspaces (or manifolds) and potentially corrupted by noise, gross errors, or outliers. This challenging task requires the development of new algebraic, geometric, statistical, and computational methods for efficient and robust estimation and segmentation of one or multiple subspaces. The book also presents interesting real-world applications of these new methods in image processing, image and video segmentation, face recognition and clustering, and hybrid system identification etc. This book is intended to serve as a textbook for graduate students and beginning researchers in data science, machine learning, computer vision, image and signal processing, and systems theory. It contains ample illustrations, examples, and exercises and is made largely self-contained with three Appendices which survey basic concepts and principles from statistics, optimization, and algebraic-geometry used in this book. René Vidal is a Professor of Biomedical Engineering and Director of the Vision Dynamics and Learning Lab at The Johns Hopkins University. Yi Ma is Executive Dean and Professor at the School of Information Science and Technology at ShanghaiTech University. S. Shankar Sastry is Dean of the College of Engineering, Professor of Electrical Engineering and Computer Science and Professor of Bioengineering at the University of California, Berkeley.

Multiple View Geometry in Computer Vision

Multiple View Geometry in Computer Vision PDF Author: Richard Hartley
Publisher: Cambridge University Press
ISBN: 1139449141
Category : Computers
Languages : en
Pages : 676

Get Book Here

Book Description
A basic problem in computer vision is to understand the structure of a real world scene given several images of it. Techniques for solving this problem are taken from projective geometry and photogrammetry. Here, the authors cover the geometric principles and their algebraic representation in terms of camera projection matrices, the fundamental matrix and the trifocal tensor. The theory and methods of computation of these entities are discussed with real examples, as is their use in the reconstruction of scenes from multiple images. The new edition features an extended introduction covering the key ideas in the book (which itself has been updated with additional examples and appendices) and significant new results which have appeared since the first edition. Comprehensive background material is provided, so readers familiar with linear algebra and basic numerical methods can understand the projective geometry and estimation algorithms presented, and implement the algorithms directly from the book.

Accurate Visual Metrology from Single and Multiple Uncalibrated Images

Accurate Visual Metrology from Single and Multiple Uncalibrated Images PDF Author: Antonio Criminisi
Publisher: Springer Science & Business Media
ISBN: 0857293273
Category : Computers
Languages : en
Pages : 194

Get Book Here

Book Description
Accurate Visual Metrology from Single and Multiple Uncalibrated Images presents novel techniques for constructing three-dimensional models from bi-dimensional images using virtual reality tools. Antonio Criminisi develops the mathematical theory of computing world measurements from single images, and builds up a hierarchy of novel, flexible techniques to make measurements and reconstruct three-dimensional scenes from uncalibrated images, paying particular attention to the accuracy of the reconstruction. This book includes examples of interesting viable applications (eg. Forensic Science, History of Art, Virtual Reality, Architectural and indoor measurements), presented in a simple way, accompanied by pictures, diagrams and plenty of worked examples to help the reader understand and implement the algorithms.

Three-mode Principal Component Analysis

Three-mode Principal Component Analysis PDF Author: Pieter M. Kroonenberg
Publisher:
ISBN: 9066950021
Category : Multivariate analysis
Languages : en
Pages : 434

Get Book Here

Book Description


Nonnegative Matrix and Tensor Factorizations

Nonnegative Matrix and Tensor Factorizations PDF Author: Andrzej Cichocki
Publisher: John Wiley & Sons
ISBN: 9780470747285
Category : Science
Languages : en
Pages : 500

Get Book Here

Book Description
This book provides a broad survey of models and efficient algorithms for Nonnegative Matrix Factorization (NMF). This includes NMF’s various extensions and modifications, especially Nonnegative Tensor Factorizations (NTF) and Nonnegative Tucker Decompositions (NTD). NMF/NTF and their extensions are increasingly used as tools in signal and image processing, and data analysis, having garnered interest due to their capability to provide new insights and relevant information about the complex latent relationships in experimental data sets. It is suggested that NMF can provide meaningful components with physical interpretations; for example, in bioinformatics, NMF and its extensions have been successfully applied to gene expression, sequence analysis, the functional characterization of genes, clustering and text mining. As such, the authors focus on the algorithms that are most useful in practice, looking at the fastest, most robust, and suitable for large-scale models. Key features: Acts as a single source reference guide to NMF, collating information that is widely dispersed in current literature, including the authors’ own recently developed techniques in the subject area. Uses generalized cost functions such as Bregman, Alpha and Beta divergences, to present practical implementations of several types of robust algorithms, in particular Multiplicative, Alternating Least Squares, Projected Gradient and Quasi Newton algorithms. Provides a comparative analysis of the different methods in order to identify approximation error and complexity. Includes pseudo codes and optimized MATLAB source codes for almost all algorithms presented in the book. The increasing interest in nonnegative matrix and tensor factorizations, as well as decompositions and sparse representation of data, will ensure that this book is essential reading for engineers, scientists, researchers, industry practitioners and graduate students across signal and image processing; neuroscience; data mining and data analysis; computer science; bioinformatics; speech processing; biomedical engineering; and multimedia.

Spectral Learning on Matrices and Tensors

Spectral Learning on Matrices and Tensors PDF Author: MAJID JANZAMIN;RONG GE;JEAN KOSSAIFI;ANIMA ANANDKU.
Publisher:
ISBN: 9781680836417
Category : Machine learning
Languages : en
Pages : 152

Get Book Here

Book Description
This book provides a theoretical and practical introduction to designing and deploying spectral learning on both matrices and tensors. It is of interest for all students, researchers and practitioners working on modern day machine learning problems.

Comprehensive Chemometrics

Comprehensive Chemometrics PDF Author:
Publisher: Elsevier
ISBN: 044452701X
Category : Science
Languages : en
Pages : 2880

Get Book Here

Book Description
Designed to serve as the first point of reference on the subject, Comprehensive Chemometrics presents an integrated summary of the present state of chemical and biochemical data analysis and manipulation. The work covers all major areas ranging from statistics to data acquisition, analysis, and applications. This major reference work provides broad-ranging, validated summaries of the major topics in chemometrics—with chapter introductions and advanced reviews for each area. The level of material is appropriate for graduate students as well as active researchers seeking a ready reference on obtaining and analyzing scientific data. Features the contributions of leading experts from 21 countries, under the guidance of the Editors-in-Chief and a team of specialist Section Editors: L. Buydens; D. Coomans; P. Van Espen; A. De Juan; J.H. Kalivas; B.K. Lavine; R. Leardi; R. Phan-Tan-Luu; L.A. Sarabia; and J. Trygg Examines the merits and limitations of each technique through practical examples and extensive visuals: 368 tables and more than 1,300 illustrations (750 in full color) Integrates coverage of chemical and biological methods, allowing readers to consider and test a range of techniques Consists of 2,200 pages and more than 90 review articles, making it the most comprehensive work of its kind Offers print and online purchase options, the latter of which delivers flexibility, accessibility, and usability through the search tools and other productivity-enhancing features of ScienceDirect

Discrete Data Analysis with R

Discrete Data Analysis with R PDF Author: Michael Friendly
Publisher: CRC Press
ISBN: 1498725864
Category : Mathematics
Languages : en
Pages : 700

Get Book Here

Book Description
An Applied Treatment of Modern Graphical Methods for Analyzing Categorical DataDiscrete Data Analysis with R: Visualization and Modeling Techniques for Categorical and Count Data presents an applied treatment of modern methods for the analysis of categorical data, both discrete response data and frequency data. It explains how to use graphical meth