Author: Jan Kunigk
Publisher: "O'Reilly Media, Inc."
ISBN: 1491969229
Category : Computers
Languages : en
Pages : 688
Book Description
There’s a lot of information about big data technologies, but splicing these technologies into an end-to-end enterprise data platform is a daunting task not widely covered. With this practical book, you’ll learn how to build big data infrastructure both on-premises and in the cloud and successfully architect a modern data platform. Ideal for enterprise architects, IT managers, application architects, and data engineers, this book shows you how to overcome the many challenges that emerge during Hadoop projects. You’ll explore the vast landscape of tools available in the Hadoop and big data realm in a thorough technical primer before diving into: Infrastructure: Look at all component layers in a modern data platform, from the server to the data center, to establish a solid foundation for data in your enterprise Platform: Understand aspects of deployment, operation, security, high availability, and disaster recovery, along with everything you need to know to integrate your platform with the rest of your enterprise IT Taking Hadoop to the cloud: Learn the important architectural aspects of running a big data platform in the cloud while maintaining enterprise security and high availability
Architecting Modern Data Platforms
Author: Jan Kunigk
Publisher: "O'Reilly Media, Inc."
ISBN: 1491969229
Category : Computers
Languages : en
Pages : 688
Book Description
There’s a lot of information about big data technologies, but splicing these technologies into an end-to-end enterprise data platform is a daunting task not widely covered. With this practical book, you’ll learn how to build big data infrastructure both on-premises and in the cloud and successfully architect a modern data platform. Ideal for enterprise architects, IT managers, application architects, and data engineers, this book shows you how to overcome the many challenges that emerge during Hadoop projects. You’ll explore the vast landscape of tools available in the Hadoop and big data realm in a thorough technical primer before diving into: Infrastructure: Look at all component layers in a modern data platform, from the server to the data center, to establish a solid foundation for data in your enterprise Platform: Understand aspects of deployment, operation, security, high availability, and disaster recovery, along with everything you need to know to integrate your platform with the rest of your enterprise IT Taking Hadoop to the cloud: Learn the important architectural aspects of running a big data platform in the cloud while maintaining enterprise security and high availability
Publisher: "O'Reilly Media, Inc."
ISBN: 1491969229
Category : Computers
Languages : en
Pages : 688
Book Description
There’s a lot of information about big data technologies, but splicing these technologies into an end-to-end enterprise data platform is a daunting task not widely covered. With this practical book, you’ll learn how to build big data infrastructure both on-premises and in the cloud and successfully architect a modern data platform. Ideal for enterprise architects, IT managers, application architects, and data engineers, this book shows you how to overcome the many challenges that emerge during Hadoop projects. You’ll explore the vast landscape of tools available in the Hadoop and big data realm in a thorough technical primer before diving into: Infrastructure: Look at all component layers in a modern data platform, from the server to the data center, to establish a solid foundation for data in your enterprise Platform: Understand aspects of deployment, operation, security, high availability, and disaster recovery, along with everything you need to know to integrate your platform with the rest of your enterprise IT Taking Hadoop to the cloud: Learn the important architectural aspects of running a big data platform in the cloud while maintaining enterprise security and high availability
The Enterprise Big Data Lake
Author: Alex Gorelik
Publisher: "O'Reilly Media, Inc."
ISBN: 1491931507
Category : Computers
Languages : en
Pages : 232
Book Description
The data lake is a daring new approach for harnessing the power of big data technology and providing convenient self-service capabilities. But is it right for your company? This book is based on discussions with practitioners and executives from more than a hundred organizations, ranging from data-driven companies such as Google, LinkedIn, and Facebook, to governments and traditional corporate enterprises. You’ll learn what a data lake is, why enterprises need one, and how to build one successfully with the best practices in this book. Alex Gorelik, CTO and founder of Waterline Data, explains why old systems and processes can no longer support data needs in the enterprise. Then, in a collection of essays about data lake implementation, you’ll examine data lake initiatives, analytic projects, experiences, and best practices from data experts working in various industries. Get a succinct introduction to data warehousing, big data, and data science Learn various paths enterprises take to build a data lake Explore how to build a self-service model and best practices for providing analysts access to the data Use different methods for architecting your data lake Discover ways to implement a data lake from experts in different industries
Publisher: "O'Reilly Media, Inc."
ISBN: 1491931507
Category : Computers
Languages : en
Pages : 232
Book Description
The data lake is a daring new approach for harnessing the power of big data technology and providing convenient self-service capabilities. But is it right for your company? This book is based on discussions with practitioners and executives from more than a hundred organizations, ranging from data-driven companies such as Google, LinkedIn, and Facebook, to governments and traditional corporate enterprises. You’ll learn what a data lake is, why enterprises need one, and how to build one successfully with the best practices in this book. Alex Gorelik, CTO and founder of Waterline Data, explains why old systems and processes can no longer support data needs in the enterprise. Then, in a collection of essays about data lake implementation, you’ll examine data lake initiatives, analytic projects, experiences, and best practices from data experts working in various industries. Get a succinct introduction to data warehousing, big data, and data science Learn various paths enterprises take to build a data lake Explore how to build a self-service model and best practices for providing analysts access to the data Use different methods for architecting your data lake Discover ways to implement a data lake from experts in different industries
Data Analytics with Google Cloud Platform
Author: Murari Ramuka
Publisher: BPB Publications
ISBN: 9389423643
Category : Computers
Languages : en
Pages : 282
Book Description
Step-by-step guide to different data movement and processing techniques, using Google Cloud Platform Services Key Featuresa- Learn the basic concept of Cloud Computing along with different Cloud service provides with their supported Models (IaaS/PaaS/SaaS)a- Learn the basics of Compute Engine, App Engine, Container Engine, Project and Billing setup in the Google Cloud Platforma- Learn how and when to use Cloud DataFlow, Cloud DataProc and Cloud DataPrep a- Build real-time data pipeline to support real-time analytics using Pub/Sub messaging servicea- Setting up a fully managed GCP Big Data Cluster using Cloud DataProc for running Apache Spark and Apache Hadoop clusters in a simpler, more cost-efficient mannera- Learn how to use Cloud Data Studio for visualizing the data on top of Big Querya- Implement and understand real-world business scenarios for Machine Learning, Data Pipeline EngineeringDescriptionModern businesses are awash with data, making data driven decision-making tasks increasingly complex. As a result, relevant technical expertise and analytical skills are required to do such tasks. This book aims to equip you with enough knowledge of Cloud Computing in conjunction with Google Cloud Data platform to succeed in the role of a Cloud data expert.Current market is trending towards the latest cloud technologies, which is the need of the hour. Google being the pioneer, is dominating this space with the right set of cloud services being offered as part of GCP (Google Cloud Platform). At this juncture, this book will be very vital and will be cover all the services that are being offered by GCP, putting emphasis on Data services.What will you learnBy the end of the book, you will have come across different data services and platforms offered by Google Cloud, and how those services/features can be enabled to serve business needs. You will also see a few case studies to put your knowledge to practice and solve business problems such as building a real-time streaming pipeline engine, Scalable Datawarehouse on Cloud, fully managed Hadoop cluster on Cloud and enabling TensorFlow/Machine Learning API's to support real-life business problems. Remember to practice additional examples to master these techniques. Who this book is forThis book is for professionals as well as graduates who want to build a career in Google Cloud data analytics technologies. One stop shop for those who wish to get an initial to advance understanding of the GCP data platform. The target audience will be data engineers/professionals who are new, as well as those who are acquainted with the tools and techniques related to cloud and data space. a- Individuals who have basic data understanding (i.e. Data and cloud) and have done some work in the field of data analytics, can refer/use this book to master their knowledge/understanding.a- The highlight of this book is that it will start with the basic cloud computing fundamentals and will move on to cover the advance concepts on GCP cloud data analytics and hence can be referred across multiple different levels of audiences. Table of Contents1. GCP Overview and Architecture2. Data Storage in GCP 3. Data Processing in GCP with Pub/Sub and Dataflow 4. Data Processing in GCP with DataPrep and Dataflow5. Big Query and Data Studio6. Machine Learning with GCP7. Sample Use cases and ExamplesAbout the Author Murari Ramuka is a seasoned Data Analytics professional with 12+ years of experience in enabling data analytics platforms using traditional DW/BI and Cloud Technologies (Azure, Google Cloud Platform) to uncover hidden insights and maximize revenue, profitability and ensure efficient operations management. He has worked with several multinational IT giants like Capgemini, Cognizant, Syntel and Icertis.His LinkedIn Profile: https://www.linkedin.com/in/murari-ramuka-98a440a/
Publisher: BPB Publications
ISBN: 9389423643
Category : Computers
Languages : en
Pages : 282
Book Description
Step-by-step guide to different data movement and processing techniques, using Google Cloud Platform Services Key Featuresa- Learn the basic concept of Cloud Computing along with different Cloud service provides with their supported Models (IaaS/PaaS/SaaS)a- Learn the basics of Compute Engine, App Engine, Container Engine, Project and Billing setup in the Google Cloud Platforma- Learn how and when to use Cloud DataFlow, Cloud DataProc and Cloud DataPrep a- Build real-time data pipeline to support real-time analytics using Pub/Sub messaging servicea- Setting up a fully managed GCP Big Data Cluster using Cloud DataProc for running Apache Spark and Apache Hadoop clusters in a simpler, more cost-efficient mannera- Learn how to use Cloud Data Studio for visualizing the data on top of Big Querya- Implement and understand real-world business scenarios for Machine Learning, Data Pipeline EngineeringDescriptionModern businesses are awash with data, making data driven decision-making tasks increasingly complex. As a result, relevant technical expertise and analytical skills are required to do such tasks. This book aims to equip you with enough knowledge of Cloud Computing in conjunction with Google Cloud Data platform to succeed in the role of a Cloud data expert.Current market is trending towards the latest cloud technologies, which is the need of the hour. Google being the pioneer, is dominating this space with the right set of cloud services being offered as part of GCP (Google Cloud Platform). At this juncture, this book will be very vital and will be cover all the services that are being offered by GCP, putting emphasis on Data services.What will you learnBy the end of the book, you will have come across different data services and platforms offered by Google Cloud, and how those services/features can be enabled to serve business needs. You will also see a few case studies to put your knowledge to practice and solve business problems such as building a real-time streaming pipeline engine, Scalable Datawarehouse on Cloud, fully managed Hadoop cluster on Cloud and enabling TensorFlow/Machine Learning API's to support real-life business problems. Remember to practice additional examples to master these techniques. Who this book is forThis book is for professionals as well as graduates who want to build a career in Google Cloud data analytics technologies. One stop shop for those who wish to get an initial to advance understanding of the GCP data platform. The target audience will be data engineers/professionals who are new, as well as those who are acquainted with the tools and techniques related to cloud and data space. a- Individuals who have basic data understanding (i.e. Data and cloud) and have done some work in the field of data analytics, can refer/use this book to master their knowledge/understanding.a- The highlight of this book is that it will start with the basic cloud computing fundamentals and will move on to cover the advance concepts on GCP cloud data analytics and hence can be referred across multiple different levels of audiences. Table of Contents1. GCP Overview and Architecture2. Data Storage in GCP 3. Data Processing in GCP with Pub/Sub and Dataflow 4. Data Processing in GCP with DataPrep and Dataflow5. Big Query and Data Studio6. Machine Learning with GCP7. Sample Use cases and ExamplesAbout the Author Murari Ramuka is a seasoned Data Analytics professional with 12+ years of experience in enabling data analytics platforms using traditional DW/BI and Cloud Technologies (Azure, Google Cloud Platform) to uncover hidden insights and maximize revenue, profitability and ensure efficient operations management. He has worked with several multinational IT giants like Capgemini, Cognizant, Syntel and Icertis.His LinkedIn Profile: https://www.linkedin.com/in/murari-ramuka-98a440a/
Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data
Author: Paul Zikopoulos
Publisher: McGraw Hill Professional
ISBN: 0071790543
Category : Computers
Languages : en
Pages : 176
Book Description
Big Data represents a new era in data exploration and utilization, and IBM is uniquely positioned to help clients navigate this transformation. This book reveals how IBM is leveraging open source Big Data technology, infused with IBM technologies, to deliver a robust, secure, highly available, enterprise-class Big Data platform. The three defining characteristics of Big Data--volume, variety, and velocity--are discussed. You'll get a primer on Hadoop and how IBM is hardening it for the enterprise, and learn when to leverage IBM InfoSphere BigInsights (Big Data at rest) and IBM InfoSphere Streams (Big Data in motion) technologies. Industry use cases are also included in this practical guide. Learn how IBM hardens Hadoop for enterprise-class scalability and reliability Gain insight into IBM's unique in-motion and at-rest Big Data analytics platform Learn tips and tricks for Big Data use cases and solutions Get a quick Hadoop primer
Publisher: McGraw Hill Professional
ISBN: 0071790543
Category : Computers
Languages : en
Pages : 176
Book Description
Big Data represents a new era in data exploration and utilization, and IBM is uniquely positioned to help clients navigate this transformation. This book reveals how IBM is leveraging open source Big Data technology, infused with IBM technologies, to deliver a robust, secure, highly available, enterprise-class Big Data platform. The three defining characteristics of Big Data--volume, variety, and velocity--are discussed. You'll get a primer on Hadoop and how IBM is hardening it for the enterprise, and learn when to leverage IBM InfoSphere BigInsights (Big Data at rest) and IBM InfoSphere Streams (Big Data in motion) technologies. Industry use cases are also included in this practical guide. Learn how IBM hardens Hadoop for enterprise-class scalability and reliability Gain insight into IBM's unique in-motion and at-rest Big Data analytics platform Learn tips and tricks for Big Data use cases and solutions Get a quick Hadoop primer
Designing Cloud Data Platforms
Author: Danil Zburivsky
Publisher: Simon and Schuster
ISBN: 1617296449
Category : Computers
Languages : en
Pages : 334
Book Description
Centralized data warehouses, the long-time defacto standard for housing data for analytics, are rapidly giving way to multi-faceted cloud data platforms. Companies that embrace modern cloud data platforms benefit from an integrated view of their business using all of their data and can take advantage of advanced analytic practices to drive predictions and as yet unimagined data services. Designing Cloud Data Platforms is an hands-on guide to envisioning and designing a modern scalable data platform that takes full advantage of the flexibility of the cloud. As you read, you''ll learn the core components of a cloud data platform design, along with the role of key technologies like Spark and Kafka Streams. You''ll also explore setting up processes to manage cloud-based data, keep it secure, and using advanced analytic and BI tools to analyse it. about the technology Access to affordable, dependable, serverless cloud services has revolutionized the way organizations can approach data management, and companies both big and small are raring to migrate to the cloud. But without a properly designed data platform, data in the cloud can remain just as siloed and inaccessible as it is today for most organizations. Designing Cloud Data Platforms lays out the principles of a well-designed platform that uses the scalable resources of the public cloud to manage all of an organization''s data, and present it as useful business insights. about the book In Designing Cloud Data Platforms, you''ll learn how to integrate data from multiple sources into a single, cloud-based, modern data platform. Drawing on their real-world experiences designing cloud data platforms for dozens of organizations, cloud data experts Danil Zburivsky and Lynda Partner take you through a six-layer approach to creating cloud data platforms that maximizes flexibility and manageability and reduces costs. Starting with foundational principles, you''ll learn how to get data into your platform from different databases, files, and APIs, the essential practices for organizing and processing that raw data, and how to best take advantage of the services offered by major cloud vendors. As you progress past the basics you''ll take a deep dive into advanced topics to get the most out of your data platform, including real-time data management, machine learning analytics, schema management, and more. what''s inside The tools of different public cloud for implementing data platforms Best practices for managing structured and unstructured data sets Machine learning tools that can be used on top of the cloud Cost optimization techniques about the reader For data professionals familiar with the basics of cloud computing and distributed data processing systems like Hadoop and Spark. about the authors Danil Zburivsky has over 10 years experience designing and supporting large-scale data infrastructure for enterprises across the globe. Lynda Partner is the VP of Analytics-as-a-Service at Pythian, and has been on the business side of data for over 20 years.
Publisher: Simon and Schuster
ISBN: 1617296449
Category : Computers
Languages : en
Pages : 334
Book Description
Centralized data warehouses, the long-time defacto standard for housing data for analytics, are rapidly giving way to multi-faceted cloud data platforms. Companies that embrace modern cloud data platforms benefit from an integrated view of their business using all of their data and can take advantage of advanced analytic practices to drive predictions and as yet unimagined data services. Designing Cloud Data Platforms is an hands-on guide to envisioning and designing a modern scalable data platform that takes full advantage of the flexibility of the cloud. As you read, you''ll learn the core components of a cloud data platform design, along with the role of key technologies like Spark and Kafka Streams. You''ll also explore setting up processes to manage cloud-based data, keep it secure, and using advanced analytic and BI tools to analyse it. about the technology Access to affordable, dependable, serverless cloud services has revolutionized the way organizations can approach data management, and companies both big and small are raring to migrate to the cloud. But without a properly designed data platform, data in the cloud can remain just as siloed and inaccessible as it is today for most organizations. Designing Cloud Data Platforms lays out the principles of a well-designed platform that uses the scalable resources of the public cloud to manage all of an organization''s data, and present it as useful business insights. about the book In Designing Cloud Data Platforms, you''ll learn how to integrate data from multiple sources into a single, cloud-based, modern data platform. Drawing on their real-world experiences designing cloud data platforms for dozens of organizations, cloud data experts Danil Zburivsky and Lynda Partner take you through a six-layer approach to creating cloud data platforms that maximizes flexibility and manageability and reduces costs. Starting with foundational principles, you''ll learn how to get data into your platform from different databases, files, and APIs, the essential practices for organizing and processing that raw data, and how to best take advantage of the services offered by major cloud vendors. As you progress past the basics you''ll take a deep dive into advanced topics to get the most out of your data platform, including real-time data management, machine learning analytics, schema management, and more. what''s inside The tools of different public cloud for implementing data platforms Best practices for managing structured and unstructured data sets Machine learning tools that can be used on top of the cloud Cost optimization techniques about the reader For data professionals familiar with the basics of cloud computing and distributed data processing systems like Hadoop and Spark. about the authors Danil Zburivsky has over 10 years experience designing and supporting large-scale data infrastructure for enterprises across the globe. Lynda Partner is the VP of Analytics-as-a-Service at Pythian, and has been on the business side of data for over 20 years.
Big Data
Author: Bill Schmarzo
Publisher: John Wiley & Sons
ISBN: 1118740009
Category : Business & Economics
Languages : en
Pages : 245
Book Description
Leverage big data to add value to your business Social media analytics, web-tracking, and other technologies help companies acquire and handle massive amounts of data to better understand their customers, products, competition, and markets. Armed with the insights from big data, companies can improve customer experience and products, add value, and increase return on investment. The tricky part for busy IT professionals and executives is how to get this done, and that's where this practical book comes in. Big Data: Understanding How Data Powers Big Business is a complete how-to guide to leveraging big data to drive business value. Full of practical techniques, real-world examples, and hands-on exercises, this book explores the technologies involved, as well as how to find areas of the organization that can take full advantage of big data. Shows how to decompose current business strategies in order to link big data initiatives to the organization’s value creation processes Explores different value creation processes and models Explains issues surrounding operationalizing big data, including organizational structures, education challenges, and new big data-related roles Provides methodology worksheets and exercises so readers can apply techniques Includes real-world examples from a variety of organizations leveraging big data Big Data: Understanding How Data Powers Big Business is written by one of Big Data's preeminent experts, William Schmarzo. Don't miss his invaluable insights and advice.
Publisher: John Wiley & Sons
ISBN: 1118740009
Category : Business & Economics
Languages : en
Pages : 245
Book Description
Leverage big data to add value to your business Social media analytics, web-tracking, and other technologies help companies acquire and handle massive amounts of data to better understand their customers, products, competition, and markets. Armed with the insights from big data, companies can improve customer experience and products, add value, and increase return on investment. The tricky part for busy IT professionals and executives is how to get this done, and that's where this practical book comes in. Big Data: Understanding How Data Powers Big Business is a complete how-to guide to leveraging big data to drive business value. Full of practical techniques, real-world examples, and hands-on exercises, this book explores the technologies involved, as well as how to find areas of the organization that can take full advantage of big data. Shows how to decompose current business strategies in order to link big data initiatives to the organization’s value creation processes Explores different value creation processes and models Explains issues surrounding operationalizing big data, including organizational structures, education challenges, and new big data-related roles Provides methodology worksheets and exercises so readers can apply techniques Includes real-world examples from a variety of organizations leveraging big data Big Data: Understanding How Data Powers Big Business is written by one of Big Data's preeminent experts, William Schmarzo. Don't miss his invaluable insights and advice.
The Self-Service Data Roadmap
Author: Sandeep Uttamchandani
Publisher: "O'Reilly Media, Inc."
ISBN: 1492075205
Category : Computers
Languages : en
Pages : 297
Book Description
Data-driven insights are a key competitive advantage for any industry today, but deriving insights from raw data can still take days or weeks. Most organizations can’t scale data science teams fast enough to keep up with the growing amounts of data to transform. What’s the answer? Self-service data. With this practical book, data engineers, data scientists, and team managers will learn how to build a self-service data science platform that helps anyone in your organization extract insights from data. Sandeep Uttamchandani provides a scorecard to track and address bottlenecks that slow down time to insight across data discovery, transformation, processing, and production. This book bridges the gap between data scientists bottlenecked by engineering realities and data engineers unclear about ways to make self-service work. Build a self-service portal to support data discovery, quality, lineage, and governance Select the best approach for each self-service capability using open source cloud technologies Tailor self-service for the people, processes, and technology maturity of your data platform Implement capabilities to democratize data and reduce time to insight Scale your self-service portal to support a large number of users within your organization
Publisher: "O'Reilly Media, Inc."
ISBN: 1492075205
Category : Computers
Languages : en
Pages : 297
Book Description
Data-driven insights are a key competitive advantage for any industry today, but deriving insights from raw data can still take days or weeks. Most organizations can’t scale data science teams fast enough to keep up with the growing amounts of data to transform. What’s the answer? Self-service data. With this practical book, data engineers, data scientists, and team managers will learn how to build a self-service data science platform that helps anyone in your organization extract insights from data. Sandeep Uttamchandani provides a scorecard to track and address bottlenecks that slow down time to insight across data discovery, transformation, processing, and production. This book bridges the gap between data scientists bottlenecked by engineering realities and data engineers unclear about ways to make self-service work. Build a self-service portal to support data discovery, quality, lineage, and governance Select the best approach for each self-service capability using open source cloud technologies Tailor self-service for the people, processes, and technology maturity of your data platform Implement capabilities to democratize data and reduce time to insight Scale your self-service portal to support a large number of users within your organization
Spark: The Definitive Guide
Author: Bill Chambers
Publisher: "O'Reilly Media, Inc."
ISBN: 1491912294
Category : Computers
Languages : en
Pages : 594
Book Description
Learn how to use, deploy, and maintain Apache Spark with this comprehensive guide, written by the creators of the open-source cluster-computing framework. With an emphasis on improvements and new features in Spark 2.0, authors Bill Chambers and Matei Zaharia break down Spark topics into distinct sections, each with unique goals. Youâ??ll explore the basic operations and common functions of Sparkâ??s structured APIs, as well as Structured Streaming, a new high-level API for building end-to-end streaming applications. Developers and system administrators will learn the fundamentals of monitoring, tuning, and debugging Spark, and explore machine learning techniques and scenarios for employing MLlib, Sparkâ??s scalable machine-learning library. Get a gentle overview of big data and Spark Learn about DataFrames, SQL, and Datasetsâ??Sparkâ??s core APIsâ??through worked examples Dive into Sparkâ??s low-level APIs, RDDs, and execution of SQL and DataFrames Understand how Spark runs on a cluster Debug, monitor, and tune Spark clusters and applications Learn the power of Structured Streaming, Sparkâ??s stream-processing engine Learn how you can apply MLlib to a variety of problems, including classification or recommendation
Publisher: "O'Reilly Media, Inc."
ISBN: 1491912294
Category : Computers
Languages : en
Pages : 594
Book Description
Learn how to use, deploy, and maintain Apache Spark with this comprehensive guide, written by the creators of the open-source cluster-computing framework. With an emphasis on improvements and new features in Spark 2.0, authors Bill Chambers and Matei Zaharia break down Spark topics into distinct sections, each with unique goals. Youâ??ll explore the basic operations and common functions of Sparkâ??s structured APIs, as well as Structured Streaming, a new high-level API for building end-to-end streaming applications. Developers and system administrators will learn the fundamentals of monitoring, tuning, and debugging Spark, and explore machine learning techniques and scenarios for employing MLlib, Sparkâ??s scalable machine-learning library. Get a gentle overview of big data and Spark Learn about DataFrames, SQL, and Datasetsâ??Sparkâ??s core APIsâ??through worked examples Dive into Sparkâ??s low-level APIs, RDDs, and execution of SQL and DataFrames Understand how Spark runs on a cluster Debug, monitor, and tune Spark clusters and applications Learn the power of Structured Streaming, Sparkâ??s stream-processing engine Learn how you can apply MLlib to a variety of problems, including classification or recommendation
Data Mesh
Author: Zhamak Dehghani
Publisher: "O'Reilly Media, Inc."
ISBN: 1492092363
Category : Computers
Languages : en
Pages : 387
Book Description
Many enterprises are investing in a next-generation data lake, hoping to democratize data at scale to provide business insights and ultimately make automated intelligent decisions. In this practical book, author Zhamak Dehghani reveals that, despite the time, money, and effort poured into them, data warehouses and data lakes fail when applied at the scale and speed of today's organizations. A distributed data mesh is a better choice. Dehghani guides architects, technical leaders, and decision makers on their journey from monolithic big data architecture to a sociotechnical paradigm that draws from modern distributed architecture. A data mesh considers domains as a first-class concern, applies platform thinking to create self-serve data infrastructure, treats data as a product, and introduces a federated and computational model of data governance. This book shows you why and how. Examine the current data landscape from the perspective of business and organizational needs, environmental challenges, and existing architectures Analyze the landscape's underlying characteristics and failure modes Get a complete introduction to data mesh principles and its constituents Learn how to design a data mesh architecture Move beyond a monolithic data lake to a distributed data mesh.
Publisher: "O'Reilly Media, Inc."
ISBN: 1492092363
Category : Computers
Languages : en
Pages : 387
Book Description
Many enterprises are investing in a next-generation data lake, hoping to democratize data at scale to provide business insights and ultimately make automated intelligent decisions. In this practical book, author Zhamak Dehghani reveals that, despite the time, money, and effort poured into them, data warehouses and data lakes fail when applied at the scale and speed of today's organizations. A distributed data mesh is a better choice. Dehghani guides architects, technical leaders, and decision makers on their journey from monolithic big data architecture to a sociotechnical paradigm that draws from modern distributed architecture. A data mesh considers domains as a first-class concern, applies platform thinking to create self-serve data infrastructure, treats data as a product, and introduces a federated and computational model of data governance. This book shows you why and how. Examine the current data landscape from the perspective of business and organizational needs, environmental challenges, and existing architectures Analyze the landscape's underlying characteristics and failure modes Get a complete introduction to data mesh principles and its constituents Learn how to design a data mesh architecture Move beyond a monolithic data lake to a distributed data mesh.
Data Science on the Google Cloud Platform
Author: Valliappa Lakshmanan
Publisher: "O'Reilly Media, Inc."
ISBN: 1491974532
Category : Computers
Languages : en
Pages : 403
Book Description
Learn how easy it is to apply sophisticated statistical and machine learning methods to real-world problems when you build on top of the Google Cloud Platform (GCP). This hands-on guide shows developers entering the data science field how to implement an end-to-end data pipeline, using statistical and machine learning methods and tools on GCP. Through the course of the book, you’ll work through a sample business decision by employing a variety of data science approaches. Follow along by implementing these statistical and machine learning solutions in your own project on GCP, and discover how this platform provides a transformative and more collaborative way of doing data science. You’ll learn how to: Automate and schedule data ingest, using an App Engine application Create and populate a dashboard in Google Data Studio Build a real-time analysis pipeline to carry out streaming analytics Conduct interactive data exploration with Google BigQuery Create a Bayesian model on a Cloud Dataproc cluster Build a logistic regression machine-learning model with Spark Compute time-aggregate features with a Cloud Dataflow pipeline Create a high-performing prediction model with TensorFlow Use your deployed model as a microservice you can access from both batch and real-time pipelines
Publisher: "O'Reilly Media, Inc."
ISBN: 1491974532
Category : Computers
Languages : en
Pages : 403
Book Description
Learn how easy it is to apply sophisticated statistical and machine learning methods to real-world problems when you build on top of the Google Cloud Platform (GCP). This hands-on guide shows developers entering the data science field how to implement an end-to-end data pipeline, using statistical and machine learning methods and tools on GCP. Through the course of the book, you’ll work through a sample business decision by employing a variety of data science approaches. Follow along by implementing these statistical and machine learning solutions in your own project on GCP, and discover how this platform provides a transformative and more collaborative way of doing data science. You’ll learn how to: Automate and schedule data ingest, using an App Engine application Create and populate a dashboard in Google Data Studio Build a real-time analysis pipeline to carry out streaming analytics Conduct interactive data exploration with Google BigQuery Create a Bayesian model on a Cloud Dataproc cluster Build a logistic regression machine-learning model with Spark Compute time-aggregate features with a Cloud Dataflow pipeline Create a high-performing prediction model with TensorFlow Use your deployed model as a microservice you can access from both batch and real-time pipelines