Author: Luc Bauwens
Publisher: OUP Oxford
ISBN: 0191588466
Category : Business & Economics
Languages : en
Pages : 370
Book Description
This book contains an up-to-date coverage of the last twenty years advances in Bayesian inference in econometrics, with an emphasis on dynamic models. It shows how to treat Bayesian inference in non linear models, by integrating the useful developments of numerical integration techniques based on simulations (such as Markov Chain Monte Carlo methods), and the long available analytical results of Bayesian inference for linear regression models. It thus covers a broad range of rather recent models for economic time series, such as non linear models, autoregressive conditional heteroskedastic regressions, and cointegrated vector autoregressive models. It contains also an extensive chapter on unit root inference from the Bayesian viewpoint. Several examples illustrate the methods.
Bayesian Inference in Dynamic Econometric Models
Author: Luc Bauwens
Publisher: OUP Oxford
ISBN: 0191588466
Category : Business & Economics
Languages : en
Pages : 370
Book Description
This book contains an up-to-date coverage of the last twenty years advances in Bayesian inference in econometrics, with an emphasis on dynamic models. It shows how to treat Bayesian inference in non linear models, by integrating the useful developments of numerical integration techniques based on simulations (such as Markov Chain Monte Carlo methods), and the long available analytical results of Bayesian inference for linear regression models. It thus covers a broad range of rather recent models for economic time series, such as non linear models, autoregressive conditional heteroskedastic regressions, and cointegrated vector autoregressive models. It contains also an extensive chapter on unit root inference from the Bayesian viewpoint. Several examples illustrate the methods.
Publisher: OUP Oxford
ISBN: 0191588466
Category : Business & Economics
Languages : en
Pages : 370
Book Description
This book contains an up-to-date coverage of the last twenty years advances in Bayesian inference in econometrics, with an emphasis on dynamic models. It shows how to treat Bayesian inference in non linear models, by integrating the useful developments of numerical integration techniques based on simulations (such as Markov Chain Monte Carlo methods), and the long available analytical results of Bayesian inference for linear regression models. It thus covers a broad range of rather recent models for economic time series, such as non linear models, autoregressive conditional heteroskedastic regressions, and cointegrated vector autoregressive models. It contains also an extensive chapter on unit root inference from the Bayesian viewpoint. Several examples illustrate the methods.
Simulation-based Inference in Econometrics
Author: Roberto Mariano
Publisher: Cambridge University Press
ISBN: 9780521591126
Category : Business & Economics
Languages : en
Pages : 488
Book Description
This substantial volume has two principal objectives. First it provides an overview of the statistical foundations of Simulation-based inference. This includes the summary and synthesis of the many concepts and results extant in the theoretical literature, the different classes of problems and estimators, the asymptotic properties of these estimators, as well as descriptions of the different simulators in use. Second, the volume provides empirical and operational examples of SBI methods. Often what is missing, even in existing applied papers, are operational issues. Which simulator works best for which problem and why? This volume will explicitly address the important numerical and computational issues in SBI which are not covered comprehensively in the existing literature. Examples of such issues are: comparisons with existing tractable methods, number of replications needed for robust results, choice of instruments, simulation noise and bias as well as efficiency loss in practice.
Publisher: Cambridge University Press
ISBN: 9780521591126
Category : Business & Economics
Languages : en
Pages : 488
Book Description
This substantial volume has two principal objectives. First it provides an overview of the statistical foundations of Simulation-based inference. This includes the summary and synthesis of the many concepts and results extant in the theoretical literature, the different classes of problems and estimators, the asymptotic properties of these estimators, as well as descriptions of the different simulators in use. Second, the volume provides empirical and operational examples of SBI methods. Often what is missing, even in existing applied papers, are operational issues. Which simulator works best for which problem and why? This volume will explicitly address the important numerical and computational issues in SBI which are not covered comprehensively in the existing literature. Examples of such issues are: comparisons with existing tractable methods, number of replications needed for robust results, choice of instruments, simulation noise and bias as well as efficiency loss in practice.
Bayesian Forecasting and Dynamic Models
Author: Mike West
Publisher: Springer Science & Business Media
ISBN: 1475793650
Category : Mathematics
Languages : en
Pages : 720
Book Description
In this book we are concerned with Bayesian learning and forecast ing in dynamic environments. We describe the structure and theory of classes of dynamic models, and their uses in Bayesian forecasting. The principles, models and methods of Bayesian forecasting have been developed extensively during the last twenty years. This devel opment has involved thorough investigation of mathematical and sta tistical aspects of forecasting models and related techniques. With this has come experience with application in a variety of areas in commercial and industrial, scientific and socio-economic fields. In deed much of the technical development has been driven by the needs of forecasting practitioners. As a result, there now exists a relatively complete statistical and mathematical framework, although much of this is either not properly documented or not easily accessible. Our primary goals in writing this book have been to present our view of this approach to modelling and forecasting, and to provide a rea sonably complete text for advanced university students and research workers. The text is primarily intended for advanced undergraduate and postgraduate students in statistics and mathematics. In line with this objective we present thorough discussion of mathematical and statistical features of Bayesian analyses of dynamic models, with illustrations, examples and exercises in each Chapter.
Publisher: Springer Science & Business Media
ISBN: 1475793650
Category : Mathematics
Languages : en
Pages : 720
Book Description
In this book we are concerned with Bayesian learning and forecast ing in dynamic environments. We describe the structure and theory of classes of dynamic models, and their uses in Bayesian forecasting. The principles, models and methods of Bayesian forecasting have been developed extensively during the last twenty years. This devel opment has involved thorough investigation of mathematical and sta tistical aspects of forecasting models and related techniques. With this has come experience with application in a variety of areas in commercial and industrial, scientific and socio-economic fields. In deed much of the technical development has been driven by the needs of forecasting practitioners. As a result, there now exists a relatively complete statistical and mathematical framework, although much of this is either not properly documented or not easily accessible. Our primary goals in writing this book have been to present our view of this approach to modelling and forecasting, and to provide a rea sonably complete text for advanced university students and research workers. The text is primarily intended for advanced undergraduate and postgraduate students in statistics and mathematics. In line with this objective we present thorough discussion of mathematical and statistical features of Bayesian analyses of dynamic models, with illustrations, examples and exercises in each Chapter.
Bayesian Estimation of DSGE Models
Author: Edward P. Herbst
Publisher: Princeton University Press
ISBN: 0691161089
Category : Business & Economics
Languages : en
Pages : 295
Book Description
Dynamic stochastic general equilibrium (DSGE) models have become one of the workhorses of modern macroeconomics and are extensively used for academic research as well as forecasting and policy analysis at central banks. This book introduces readers to state-of-the-art computational techniques used in the Bayesian analysis of DSGE models. The book covers Markov chain Monte Carlo techniques for linearized DSGE models, novel sequential Monte Carlo methods that can be used for parameter inference, and the estimation of nonlinear DSGE models based on particle filter approximations of the likelihood function. The theoretical foundations of the algorithms are discussed in depth, and detailed empirical applications and numerical illustrations are provided. The book also gives invaluable advice on how to tailor these algorithms to specific applications and assess the accuracy and reliability of the computations. Bayesian Estimation of DSGE Models is essential reading for graduate students, academic researchers, and practitioners at policy institutions.
Publisher: Princeton University Press
ISBN: 0691161089
Category : Business & Economics
Languages : en
Pages : 295
Book Description
Dynamic stochastic general equilibrium (DSGE) models have become one of the workhorses of modern macroeconomics and are extensively used for academic research as well as forecasting and policy analysis at central banks. This book introduces readers to state-of-the-art computational techniques used in the Bayesian analysis of DSGE models. The book covers Markov chain Monte Carlo techniques for linearized DSGE models, novel sequential Monte Carlo methods that can be used for parameter inference, and the estimation of nonlinear DSGE models based on particle filter approximations of the likelihood function. The theoretical foundations of the algorithms are discussed in depth, and detailed empirical applications and numerical illustrations are provided. The book also gives invaluable advice on how to tailor these algorithms to specific applications and assess the accuracy and reliability of the computations. Bayesian Estimation of DSGE Models is essential reading for graduate students, academic researchers, and practitioners at policy institutions.
Bayesian Econometric Methods
Author: Joshua Chan
Publisher: Cambridge University Press
ISBN: 1108423388
Category : Business & Economics
Languages : en
Pages : 491
Book Description
Illustrates Bayesian theory and application through a series of exercises in question and answer format.
Publisher: Cambridge University Press
ISBN: 1108423388
Category : Business & Economics
Languages : en
Pages : 491
Book Description
Illustrates Bayesian theory and application through a series of exercises in question and answer format.
The Oxford Handbook of Bayesian Econometrics
Author: John Geweke
Publisher: Oxford University Press
ISBN: 0191618268
Category : Business & Economics
Languages : en
Pages : 576
Book Description
Bayesian econometric methods have enjoyed an increase in popularity in recent years. Econometricians, empirical economists, and policymakers are increasingly making use of Bayesian methods. This handbook is a single source for researchers and policymakers wanting to learn about Bayesian methods in specialized fields, and for graduate students seeking to make the final step from textbook learning to the research frontier. It contains contributions by leading Bayesians on the latest developments in their specific fields of expertise. The volume provides broad coverage of the application of Bayesian econometrics in the major fields of economics and related disciplines, including macroeconomics, microeconomics, finance, and marketing. It reviews the state of the art in Bayesian econometric methodology, with chapters on posterior simulation and Markov chain Monte Carlo methods, Bayesian nonparametric techniques, and the specialized tools used by Bayesian time series econometricians such as state space models and particle filtering. It also includes chapters on Bayesian principles and methodology.
Publisher: Oxford University Press
ISBN: 0191618268
Category : Business & Economics
Languages : en
Pages : 576
Book Description
Bayesian econometric methods have enjoyed an increase in popularity in recent years. Econometricians, empirical economists, and policymakers are increasingly making use of Bayesian methods. This handbook is a single source for researchers and policymakers wanting to learn about Bayesian methods in specialized fields, and for graduate students seeking to make the final step from textbook learning to the research frontier. It contains contributions by leading Bayesians on the latest developments in their specific fields of expertise. The volume provides broad coverage of the application of Bayesian econometrics in the major fields of economics and related disciplines, including macroeconomics, microeconomics, finance, and marketing. It reviews the state of the art in Bayesian econometric methodology, with chapters on posterior simulation and Markov chain Monte Carlo methods, Bayesian nonparametric techniques, and the specialized tools used by Bayesian time series econometricians such as state space models and particle filtering. It also includes chapters on Bayesian principles and methodology.
Introduction to Bayesian Econometrics
Author: Edward Greenberg
Publisher: Cambridge University Press
ISBN: 1107015316
Category : Business & Economics
Languages : en
Pages : 271
Book Description
This textbook explains the basic ideas of subjective probability and shows how subjective probabilities must obey the usual rules of probability to ensure coherency. It defines the likelihood function, prior distributions and posterior distributions. It explains how posterior distributions are the basis for inference and explores their basic properties. Various methods of specifying prior distributions are considered, with special emphasis on subject-matter considerations and exchange ability. The regression model is examined to show how analytical methods may fail in the derivation of marginal posterior distributions. The remainder of the book is concerned with applications of the theory to important models that are used in economics, political science, biostatistics and other applied fields. New to the second edition is a chapter on semiparametric regression and new sections on the ordinal probit, item response, factor analysis, ARCH-GARCH and stochastic volatility models. The new edition also emphasizes the R programming language.
Publisher: Cambridge University Press
ISBN: 1107015316
Category : Business & Economics
Languages : en
Pages : 271
Book Description
This textbook explains the basic ideas of subjective probability and shows how subjective probabilities must obey the usual rules of probability to ensure coherency. It defines the likelihood function, prior distributions and posterior distributions. It explains how posterior distributions are the basis for inference and explores their basic properties. Various methods of specifying prior distributions are considered, with special emphasis on subject-matter considerations and exchange ability. The regression model is examined to show how analytical methods may fail in the derivation of marginal posterior distributions. The remainder of the book is concerned with applications of the theory to important models that are used in economics, political science, biostatistics and other applied fields. New to the second edition is a chapter on semiparametric regression and new sections on the ordinal probit, item response, factor analysis, ARCH-GARCH and stochastic volatility models. The new edition also emphasizes the R programming language.
Dynamic Linear Models with R
Author: Giovanni Petris
Publisher: Springer Science & Business Media
ISBN: 0387772383
Category : Mathematics
Languages : en
Pages : 258
Book Description
State space models have gained tremendous popularity in recent years in as disparate fields as engineering, economics, genetics and ecology. After a detailed introduction to general state space models, this book focuses on dynamic linear models, emphasizing their Bayesian analysis. Whenever possible it is shown how to compute estimates and forecasts in closed form; for more complex models, simulation techniques are used. A final chapter covers modern sequential Monte Carlo algorithms. The book illustrates all the fundamental steps needed to use dynamic linear models in practice, using R. Many detailed examples based on real data sets are provided to show how to set up a specific model, estimate its parameters, and use it for forecasting. All the code used in the book is available online. No prior knowledge of Bayesian statistics or time series analysis is required, although familiarity with basic statistics and R is assumed.
Publisher: Springer Science & Business Media
ISBN: 0387772383
Category : Mathematics
Languages : en
Pages : 258
Book Description
State space models have gained tremendous popularity in recent years in as disparate fields as engineering, economics, genetics and ecology. After a detailed introduction to general state space models, this book focuses on dynamic linear models, emphasizing their Bayesian analysis. Whenever possible it is shown how to compute estimates and forecasts in closed form; for more complex models, simulation techniques are used. A final chapter covers modern sequential Monte Carlo algorithms. The book illustrates all the fundamental steps needed to use dynamic linear models in practice, using R. Many detailed examples based on real data sets are provided to show how to set up a specific model, estimate its parameters, and use it for forecasting. All the code used in the book is available online. No prior knowledge of Bayesian statistics or time series analysis is required, although familiarity with basic statistics and R is assumed.
Bayesian Inference of State Space Models
Author: Kostas Triantafyllopoulos
Publisher: Springer Nature
ISBN: 303076124X
Category : Mathematics
Languages : en
Pages : 503
Book Description
Bayesian Inference of State Space Models: Kalman Filtering and Beyond offers a comprehensive introduction to Bayesian estimation and forecasting for state space models. The celebrated Kalman filter, with its numerous extensions, takes centre stage in the book. Univariate and multivariate models, linear Gaussian, non-linear and non-Gaussian models are discussed with applications to signal processing, environmetrics, economics and systems engineering. Over the past years there has been a growing literature on Bayesian inference of state space models, focusing on multivariate models as well as on non-linear and non-Gaussian models. The availability of time series data in many fields of science and industry on the one hand, and the development of low-cost computational capabilities on the other, have resulted in a wealth of statistical methods aimed at parameter estimation and forecasting. This book brings together many of these methods, presenting an accessible and comprehensive introduction to state space models. A number of data sets from different disciplines are used to illustrate the methods and show how they are applied in practice. The R package BTSA, created for the book, includes many of the algorithms and examples presented. The book is essentially self-contained and includes a chapter summarising the prerequisites in undergraduate linear algebra, probability and statistics. An up-to-date and complete account of state space methods, illustrated by real-life data sets and R code, this textbook will appeal to a wide range of students and scientists, notably in the disciplines of statistics, systems engineering, signal processing, data science, finance and econometrics. With numerous exercises in each chapter, and prerequisite knowledge conveniently recalled, it is suitable for upper undergraduate and graduate courses.
Publisher: Springer Nature
ISBN: 303076124X
Category : Mathematics
Languages : en
Pages : 503
Book Description
Bayesian Inference of State Space Models: Kalman Filtering and Beyond offers a comprehensive introduction to Bayesian estimation and forecasting for state space models. The celebrated Kalman filter, with its numerous extensions, takes centre stage in the book. Univariate and multivariate models, linear Gaussian, non-linear and non-Gaussian models are discussed with applications to signal processing, environmetrics, economics and systems engineering. Over the past years there has been a growing literature on Bayesian inference of state space models, focusing on multivariate models as well as on non-linear and non-Gaussian models. The availability of time series data in many fields of science and industry on the one hand, and the development of low-cost computational capabilities on the other, have resulted in a wealth of statistical methods aimed at parameter estimation and forecasting. This book brings together many of these methods, presenting an accessible and comprehensive introduction to state space models. A number of data sets from different disciplines are used to illustrate the methods and show how they are applied in practice. The R package BTSA, created for the book, includes many of the algorithms and examples presented. The book is essentially self-contained and includes a chapter summarising the prerequisites in undergraduate linear algebra, probability and statistics. An up-to-date and complete account of state space methods, illustrated by real-life data sets and R code, this textbook will appeal to a wide range of students and scientists, notably in the disciplines of statistics, systems engineering, signal processing, data science, finance and econometrics. With numerous exercises in each chapter, and prerequisite knowledge conveniently recalled, it is suitable for upper undergraduate and graduate courses.
Complete and Incomplete Econometric Models
Author: John Geweke
Publisher: Princeton University Press
ISBN: 1400835240
Category : Business & Economics
Languages : en
Pages : 176
Book Description
Econometric models are widely used in the creation and evaluation of economic policy in the public and private sectors. But these models are useful only if they adequately account for the phenomena in question, and they can be quite misleading if they do not. In response, econometricians have developed tests and other checks for model adequacy. All of these methods, however, take as given the specification of the model to be tested. In this book, John Geweke addresses the critical earlier stage of model development, the point at which potential models are inherently incomplete. Summarizing and extending recent advances in Bayesian econometrics, Geweke shows how simple modern simulation methods can complement the creative process of model formulation. These methods, which are accessible to economics PhD students as well as to practicing applied econometricians, streamline the processes of model development and specification checking. Complete with illustrations from a wide variety of applications, this is an important contribution to econometrics that will interest economists and PhD students alike.
Publisher: Princeton University Press
ISBN: 1400835240
Category : Business & Economics
Languages : en
Pages : 176
Book Description
Econometric models are widely used in the creation and evaluation of economic policy in the public and private sectors. But these models are useful only if they adequately account for the phenomena in question, and they can be quite misleading if they do not. In response, econometricians have developed tests and other checks for model adequacy. All of these methods, however, take as given the specification of the model to be tested. In this book, John Geweke addresses the critical earlier stage of model development, the point at which potential models are inherently incomplete. Summarizing and extending recent advances in Bayesian econometrics, Geweke shows how simple modern simulation methods can complement the creative process of model formulation. These methods, which are accessible to economics PhD students as well as to practicing applied econometricians, streamline the processes of model development and specification checking. Complete with illustrations from a wide variety of applications, this is an important contribution to econometrics that will interest economists and PhD students alike.