Author: Lyle D. Broemeling
Publisher: CRC Press
ISBN: 1315303574
Category : Mathematics
Languages : en
Pages : 409
Book Description
This is the first book designed to introduce Bayesian inference procedures for stochastic processes. There are clear advantages to the Bayesian approach (including the optimal use of prior information). Initially, the book begins with a brief review of Bayesian inference and uses many examples relevant to the analysis of stochastic processes, including the four major types, namely those with discrete time and discrete state space and continuous time and continuous state space. The elements necessary to understanding stochastic processes are then introduced, followed by chapters devoted to the Bayesian analysis of such processes. It is important that a chapter devoted to the fundamental concepts in stochastic processes is included. Bayesian inference (estimation, testing hypotheses, and prediction) for discrete time Markov chains, for Markov jump processes, for normal processes (e.g. Brownian motion and the Ornstein–Uhlenbeck process), for traditional time series, and, lastly, for point and spatial processes are described in detail. Heavy emphasis is placed on many examples taken from biology and other scientific disciplines. In order analyses of stochastic processes, it will use R and WinBUGS. Features: Uses the Bayesian approach to make statistical Inferences about stochastic processes The R package is used to simulate realizations from different types of processes Based on realizations from stochastic processes, the WinBUGS package will provide the Bayesian analysis (estimation, testing hypotheses, and prediction) for the unknown parameters of stochastic processes To illustrate the Bayesian inference, many examples taken from biology, economics, and astronomy will reinforce the basic concepts of the subject A practical approach is implemented by considering realistic examples of interest to the scientific community WinBUGS and R code are provided in the text, allowing the reader to easily verify the results of the inferential procedures found in the many examples of the book Readers with a good background in two areas, probability theory and statistical inference, should be able to master the essential ideas of this book.
Bayesian Inference for Stochastic Processes
Author: Lyle D. Broemeling
Publisher: CRC Press
ISBN: 1315303574
Category : Mathematics
Languages : en
Pages : 409
Book Description
This is the first book designed to introduce Bayesian inference procedures for stochastic processes. There are clear advantages to the Bayesian approach (including the optimal use of prior information). Initially, the book begins with a brief review of Bayesian inference and uses many examples relevant to the analysis of stochastic processes, including the four major types, namely those with discrete time and discrete state space and continuous time and continuous state space. The elements necessary to understanding stochastic processes are then introduced, followed by chapters devoted to the Bayesian analysis of such processes. It is important that a chapter devoted to the fundamental concepts in stochastic processes is included. Bayesian inference (estimation, testing hypotheses, and prediction) for discrete time Markov chains, for Markov jump processes, for normal processes (e.g. Brownian motion and the Ornstein–Uhlenbeck process), for traditional time series, and, lastly, for point and spatial processes are described in detail. Heavy emphasis is placed on many examples taken from biology and other scientific disciplines. In order analyses of stochastic processes, it will use R and WinBUGS. Features: Uses the Bayesian approach to make statistical Inferences about stochastic processes The R package is used to simulate realizations from different types of processes Based on realizations from stochastic processes, the WinBUGS package will provide the Bayesian analysis (estimation, testing hypotheses, and prediction) for the unknown parameters of stochastic processes To illustrate the Bayesian inference, many examples taken from biology, economics, and astronomy will reinforce the basic concepts of the subject A practical approach is implemented by considering realistic examples of interest to the scientific community WinBUGS and R code are provided in the text, allowing the reader to easily verify the results of the inferential procedures found in the many examples of the book Readers with a good background in two areas, probability theory and statistical inference, should be able to master the essential ideas of this book.
Publisher: CRC Press
ISBN: 1315303574
Category : Mathematics
Languages : en
Pages : 409
Book Description
This is the first book designed to introduce Bayesian inference procedures for stochastic processes. There are clear advantages to the Bayesian approach (including the optimal use of prior information). Initially, the book begins with a brief review of Bayesian inference and uses many examples relevant to the analysis of stochastic processes, including the four major types, namely those with discrete time and discrete state space and continuous time and continuous state space. The elements necessary to understanding stochastic processes are then introduced, followed by chapters devoted to the Bayesian analysis of such processes. It is important that a chapter devoted to the fundamental concepts in stochastic processes is included. Bayesian inference (estimation, testing hypotheses, and prediction) for discrete time Markov chains, for Markov jump processes, for normal processes (e.g. Brownian motion and the Ornstein–Uhlenbeck process), for traditional time series, and, lastly, for point and spatial processes are described in detail. Heavy emphasis is placed on many examples taken from biology and other scientific disciplines. In order analyses of stochastic processes, it will use R and WinBUGS. Features: Uses the Bayesian approach to make statistical Inferences about stochastic processes The R package is used to simulate realizations from different types of processes Based on realizations from stochastic processes, the WinBUGS package will provide the Bayesian analysis (estimation, testing hypotheses, and prediction) for the unknown parameters of stochastic processes To illustrate the Bayesian inference, many examples taken from biology, economics, and astronomy will reinforce the basic concepts of the subject A practical approach is implemented by considering realistic examples of interest to the scientific community WinBUGS and R code are provided in the text, allowing the reader to easily verify the results of the inferential procedures found in the many examples of the book Readers with a good background in two areas, probability theory and statistical inference, should be able to master the essential ideas of this book.
Bayesian Analysis of Stochastic Process Models
Author: David Insua
Publisher: John Wiley & Sons
ISBN: 1118304039
Category : Mathematics
Languages : en
Pages : 315
Book Description
Bayesian analysis of complex models based on stochastic processes has in recent years become a growing area. This book provides a unified treatment of Bayesian analysis of models based on stochastic processes, covering the main classes of stochastic processing including modeling, computational, inference, forecasting, decision making and important applied models. Key features: Explores Bayesian analysis of models based on stochastic processes, providing a unified treatment. Provides a thorough introduction for research students. Computational tools to deal with complex problems are illustrated along with real life case studies Looks at inference, prediction and decision making. Researchers, graduate and advanced undergraduate students interested in stochastic processes in fields such as statistics, operations research (OR), engineering, finance, economics, computer science and Bayesian analysis will benefit from reading this book. With numerous applications included, practitioners of OR, stochastic modelling and applied statistics will also find this book useful.
Publisher: John Wiley & Sons
ISBN: 1118304039
Category : Mathematics
Languages : en
Pages : 315
Book Description
Bayesian analysis of complex models based on stochastic processes has in recent years become a growing area. This book provides a unified treatment of Bayesian analysis of models based on stochastic processes, covering the main classes of stochastic processing including modeling, computational, inference, forecasting, decision making and important applied models. Key features: Explores Bayesian analysis of models based on stochastic processes, providing a unified treatment. Provides a thorough introduction for research students. Computational tools to deal with complex problems are illustrated along with real life case studies Looks at inference, prediction and decision making. Researchers, graduate and advanced undergraduate students interested in stochastic processes in fields such as statistics, operations research (OR), engineering, finance, economics, computer science and Bayesian analysis will benefit from reading this book. With numerous applications included, practitioners of OR, stochastic modelling and applied statistics will also find this book useful.
Bayesian Inference for Stochastic Processes
Author: Lyle D. Broemeling
Publisher: CRC Press
ISBN: 1315303582
Category : Mathematics
Languages : en
Pages : 432
Book Description
This is the first book designed to introduce Bayesian inference procedures for stochastic processes. There are clear advantages to the Bayesian approach (including the optimal use of prior information). Initially, the book begins with a brief review of Bayesian inference and uses many examples relevant to the analysis of stochastic processes, including the four major types, namely those with discrete time and discrete state space and continuous time and continuous state space. The elements necessary to understanding stochastic processes are then introduced, followed by chapters devoted to the Bayesian analysis of such processes. It is important that a chapter devoted to the fundamental concepts in stochastic processes is included. Bayesian inference (estimation, testing hypotheses, and prediction) for discrete time Markov chains, for Markov jump processes, for normal processes (e.g. Brownian motion and the Ornstein–Uhlenbeck process), for traditional time series, and, lastly, for point and spatial processes are described in detail. Heavy emphasis is placed on many examples taken from biology and other scientific disciplines. In order analyses of stochastic processes, it will use R and WinBUGS. Features: Uses the Bayesian approach to make statistical Inferences about stochastic processes The R package is used to simulate realizations from different types of processes Based on realizations from stochastic processes, the WinBUGS package will provide the Bayesian analysis (estimation, testing hypotheses, and prediction) for the unknown parameters of stochastic processes To illustrate the Bayesian inference, many examples taken from biology, economics, and astronomy will reinforce the basic concepts of the subject A practical approach is implemented by considering realistic examples of interest to the scientific community WinBUGS and R code are provided in the text, allowing the reader to easily verify the results of the inferential procedures found in the many examples of the book Readers with a good background in two areas, probability theory and statistical inference, should be able to master the essential ideas of this book.
Publisher: CRC Press
ISBN: 1315303582
Category : Mathematics
Languages : en
Pages : 432
Book Description
This is the first book designed to introduce Bayesian inference procedures for stochastic processes. There are clear advantages to the Bayesian approach (including the optimal use of prior information). Initially, the book begins with a brief review of Bayesian inference and uses many examples relevant to the analysis of stochastic processes, including the four major types, namely those with discrete time and discrete state space and continuous time and continuous state space. The elements necessary to understanding stochastic processes are then introduced, followed by chapters devoted to the Bayesian analysis of such processes. It is important that a chapter devoted to the fundamental concepts in stochastic processes is included. Bayesian inference (estimation, testing hypotheses, and prediction) for discrete time Markov chains, for Markov jump processes, for normal processes (e.g. Brownian motion and the Ornstein–Uhlenbeck process), for traditional time series, and, lastly, for point and spatial processes are described in detail. Heavy emphasis is placed on many examples taken from biology and other scientific disciplines. In order analyses of stochastic processes, it will use R and WinBUGS. Features: Uses the Bayesian approach to make statistical Inferences about stochastic processes The R package is used to simulate realizations from different types of processes Based on realizations from stochastic processes, the WinBUGS package will provide the Bayesian analysis (estimation, testing hypotheses, and prediction) for the unknown parameters of stochastic processes To illustrate the Bayesian inference, many examples taken from biology, economics, and astronomy will reinforce the basic concepts of the subject A practical approach is implemented by considering realistic examples of interest to the scientific community WinBUGS and R code are provided in the text, allowing the reader to easily verify the results of the inferential procedures found in the many examples of the book Readers with a good background in two areas, probability theory and statistical inference, should be able to master the essential ideas of this book.
Simulation and Inference for Stochastic Processes with YUIMA
Author: Stefano M. Iacus
Publisher: Springer
ISBN: 3319555693
Category : Computers
Languages : en
Pages : 277
Book Description
The YUIMA package is the first comprehensive R framework based on S4 classes and methods which allows for the simulation of stochastic differential equations driven by Wiener process, Lévy processes or fractional Brownian motion, as well as CARMA, COGARCH, and Point processes. The package performs various central statistical analyses such as quasi maximum likelihood estimation, adaptive Bayes estimation, structural change point analysis, hypotheses testing, asynchronous covariance estimation, lead-lag estimation, LASSO model selection, and so on. YUIMA also supports stochastic numerical analysis by fast computation of the expected value of functionals of stochastic processes through automatic asymptotic expansion by means of the Malliavin calculus. All models can be multidimensional, multiparametric or non parametric.The book explains briefly the underlying theory for simulation and inference of several classes of stochastic processes and then presents both simulation experiments and applications to real data. Although these processes have been originally proposed in physics and more recently in finance, they are becoming popular also in biology due to the fact the time course experimental data are now available. The YUIMA package, available on CRAN, can be freely downloaded and this companion book will make the user able to start his or her analysis from the first page.
Publisher: Springer
ISBN: 3319555693
Category : Computers
Languages : en
Pages : 277
Book Description
The YUIMA package is the first comprehensive R framework based on S4 classes and methods which allows for the simulation of stochastic differential equations driven by Wiener process, Lévy processes or fractional Brownian motion, as well as CARMA, COGARCH, and Point processes. The package performs various central statistical analyses such as quasi maximum likelihood estimation, adaptive Bayes estimation, structural change point analysis, hypotheses testing, asynchronous covariance estimation, lead-lag estimation, LASSO model selection, and so on. YUIMA also supports stochastic numerical analysis by fast computation of the expected value of functionals of stochastic processes through automatic asymptotic expansion by means of the Malliavin calculus. All models can be multidimensional, multiparametric or non parametric.The book explains briefly the underlying theory for simulation and inference of several classes of stochastic processes and then presents both simulation experiments and applications to real data. Although these processes have been originally proposed in physics and more recently in finance, they are becoming popular also in biology due to the fact the time course experimental data are now available. The YUIMA package, available on CRAN, can be freely downloaded and this companion book will make the user able to start his or her analysis from the first page.
Markov Chain Monte Carlo
Author: Dani Gamerman
Publisher: CRC Press
ISBN: 9780412818202
Category : Mathematics
Languages : en
Pages : 264
Book Description
Bridging the gap between research and application, Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference provides a concise, and integrated account of Markov chain Monte Carlo (MCMC) for performing Bayesian inference. This volume, which was developed from a short course taught by the author at a meeting of Brazilian statisticians and probabilists, retains the didactic character of the original course text. The self-contained text units make MCMC accessible to scientists in other disciplines as well as statisticians. It describes each component of the theory in detail and outlines related software, which is of particular benefit to applied scientists.
Publisher: CRC Press
ISBN: 9780412818202
Category : Mathematics
Languages : en
Pages : 264
Book Description
Bridging the gap between research and application, Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference provides a concise, and integrated account of Markov chain Monte Carlo (MCMC) for performing Bayesian inference. This volume, which was developed from a short course taught by the author at a meeting of Brazilian statisticians and probabilists, retains the didactic character of the original course text. The self-contained text units make MCMC accessible to scientists in other disciplines as well as statisticians. It describes each component of the theory in detail and outlines related software, which is of particular benefit to applied scientists.
Multiscale Modeling
Author: Marco A.R. Ferreira
Publisher: Springer Science & Business Media
ISBN: 0387708979
Category : Business & Economics
Languages : en
Pages : 243
Book Description
This highly useful book contains methodology for the analysis of data that arise from multiscale processes. It brings together a number of recent developments and makes them accessible to a wider audience. Taking a Bayesian approach allows for full accounting of uncertainty, and also addresses the delicate issue of uncertainty at multiple scales. These methods can handle different amounts of prior knowledge at different scales, as often occurs in practice.
Publisher: Springer Science & Business Media
ISBN: 0387708979
Category : Business & Economics
Languages : en
Pages : 243
Book Description
This highly useful book contains methodology for the analysis of data that arise from multiscale processes. It brings together a number of recent developments and makes them accessible to a wider audience. Taking a Bayesian approach allows for full accounting of uncertainty, and also addresses the delicate issue of uncertainty at multiple scales. These methods can handle different amounts of prior knowledge at different scales, as often occurs in practice.
Probability, Statistics, and Stochastic Processes
Author: Peter Olofsson
Publisher: John Wiley & Sons
ISBN: 0470889748
Category : Mathematics
Languages : en
Pages : 573
Book Description
Praise for the First Edition ". . . an excellent textbook . . . well organized and neatly written." —Mathematical Reviews ". . . amazingly interesting . . ." —Technometrics Thoroughly updated to showcase the interrelationships between probability, statistics, and stochastic processes, Probability, Statistics, and Stochastic Processes, Second Edition prepares readers to collect, analyze, and characterize data in their chosen fields. Beginning with three chapters that develop probability theory and introduce the axioms of probability, random variables, and joint distributions, the book goes on to present limit theorems and simulation. The authors combine a rigorous, calculus-based development of theory with an intuitive approach that appeals to readers' sense of reason and logic. Including more than 400 examples that help illustrate concepts and theory, the Second Edition features new material on statistical inference and a wealth of newly added topics, including: Consistency of point estimators Large sample theory Bootstrap simulation Multiple hypothesis testing Fisher's exact test and Kolmogorov-Smirnov test Martingales, renewal processes, and Brownian motion One-way analysis of variance and the general linear model Extensively class-tested to ensure an accessible presentation, Probability, Statistics, and Stochastic Processes, Second Edition is an excellent book for courses on probability and statistics at the upper-undergraduate level. The book is also an ideal resource for scientists and engineers in the fields of statistics, mathematics, industrial management, and engineering.
Publisher: John Wiley & Sons
ISBN: 0470889748
Category : Mathematics
Languages : en
Pages : 573
Book Description
Praise for the First Edition ". . . an excellent textbook . . . well organized and neatly written." —Mathematical Reviews ". . . amazingly interesting . . ." —Technometrics Thoroughly updated to showcase the interrelationships between probability, statistics, and stochastic processes, Probability, Statistics, and Stochastic Processes, Second Edition prepares readers to collect, analyze, and characterize data in their chosen fields. Beginning with three chapters that develop probability theory and introduce the axioms of probability, random variables, and joint distributions, the book goes on to present limit theorems and simulation. The authors combine a rigorous, calculus-based development of theory with an intuitive approach that appeals to readers' sense of reason and logic. Including more than 400 examples that help illustrate concepts and theory, the Second Edition features new material on statistical inference and a wealth of newly added topics, including: Consistency of point estimators Large sample theory Bootstrap simulation Multiple hypothesis testing Fisher's exact test and Kolmogorov-Smirnov test Martingales, renewal processes, and Brownian motion One-way analysis of variance and the general linear model Extensively class-tested to ensure an accessible presentation, Probability, Statistics, and Stochastic Processes, Second Edition is an excellent book for courses on probability and statistics at the upper-undergraduate level. The book is also an ideal resource for scientists and engineers in the fields of statistics, mathematics, industrial management, and engineering.
Statistical Inference for Ergodic Diffusion Processes
Author: Yury A. Kutoyants
Publisher: Springer Science & Business Media
ISBN: 144713866X
Category : Mathematics
Languages : en
Pages : 493
Book Description
The first book in inference for stochastic processes from a statistical, rather than a probabilistic, perspective. It provides a systematic exposition of theoretical results from over ten years of mathematical literature and presents, for the first time in book form, many new techniques and approaches.
Publisher: Springer Science & Business Media
ISBN: 144713866X
Category : Mathematics
Languages : en
Pages : 493
Book Description
The first book in inference for stochastic processes from a statistical, rather than a probabilistic, perspective. It provides a systematic exposition of theoretical results from over ten years of mathematical literature and presents, for the first time in book form, many new techniques and approaches.
Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA
Author: Elias T. Krainski
Publisher: CRC Press
ISBN: 0429629850
Category : Mathematics
Languages : en
Pages : 284
Book Description
Modeling spatial and spatio-temporal continuous processes is an important and challenging problem in spatial statistics. Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA describes in detail the stochastic partial differential equations (SPDE) approach for modeling continuous spatial processes with a Matérn covariance, which has been implemented using the integrated nested Laplace approximation (INLA) in the R-INLA package. Key concepts about modeling spatial processes and the SPDE approach are explained with examples using simulated data and real applications. This book has been authored by leading experts in spatial statistics, including the main developers of the INLA and SPDE methodologies and the R-INLA package. It also includes a wide range of applications: * Spatial and spatio-temporal models for continuous outcomes * Analysis of spatial and spatio-temporal point patterns * Coregionalization spatial and spatio-temporal models * Measurement error spatial models * Modeling preferential sampling * Spatial and spatio-temporal models with physical barriers * Survival analysis with spatial effects * Dynamic space-time regression * Spatial and spatio-temporal models for extremes * Hurdle models with spatial effects * Penalized Complexity priors for spatial models All the examples in the book are fully reproducible. Further information about this book, as well as the R code and datasets used, is available from the book website at http://www.r-inla.org/spde-book. The tools described in this book will be useful to researchers in many fields such as biostatistics, spatial statistics, environmental sciences, epidemiology, ecology and others. Graduate and Ph.D. students will also find this book and associated files a valuable resource to learn INLA and the SPDE approach for spatial modeling.
Publisher: CRC Press
ISBN: 0429629850
Category : Mathematics
Languages : en
Pages : 284
Book Description
Modeling spatial and spatio-temporal continuous processes is an important and challenging problem in spatial statistics. Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA describes in detail the stochastic partial differential equations (SPDE) approach for modeling continuous spatial processes with a Matérn covariance, which has been implemented using the integrated nested Laplace approximation (INLA) in the R-INLA package. Key concepts about modeling spatial processes and the SPDE approach are explained with examples using simulated data and real applications. This book has been authored by leading experts in spatial statistics, including the main developers of the INLA and SPDE methodologies and the R-INLA package. It also includes a wide range of applications: * Spatial and spatio-temporal models for continuous outcomes * Analysis of spatial and spatio-temporal point patterns * Coregionalization spatial and spatio-temporal models * Measurement error spatial models * Modeling preferential sampling * Spatial and spatio-temporal models with physical barriers * Survival analysis with spatial effects * Dynamic space-time regression * Spatial and spatio-temporal models for extremes * Hurdle models with spatial effects * Penalized Complexity priors for spatial models All the examples in the book are fully reproducible. Further information about this book, as well as the R code and datasets used, is available from the book website at http://www.r-inla.org/spde-book. The tools described in this book will be useful to researchers in many fields such as biostatistics, spatial statistics, environmental sciences, epidemiology, ecology and others. Graduate and Ph.D. students will also find this book and associated files a valuable resource to learn INLA and the SPDE approach for spatial modeling.
Understanding Advanced Statistical Methods
Author: Peter Westfall
Publisher: CRC Press
ISBN: 1466512105
Category : Mathematics
Languages : en
Pages : 572
Book Description
Providing a much-needed bridge between elementary statistics courses and advanced research methods courses, Understanding Advanced Statistical Methods helps students grasp the fundamental assumptions and machinery behind sophisticated statistical topics, such as logistic regression, maximum likelihood, bootstrapping, nonparametrics, and Bayesian methods. The book teaches students how to properly model, think critically, and design their own studies to avoid common errors. It leads them to think differently not only about math and statistics but also about general research and the scientific method. With a focus on statistical models as producers of data, the book enables students to more easily understand the machinery of advanced statistics. It also downplays the "population" interpretation of statistical models and presents Bayesian methods before frequentist ones. Requiring no prior calculus experience, the text employs a "just-in-time" approach that introduces mathematical topics, including calculus, where needed. Formulas throughout the text are used to explain why calculus and probability are essential in statistical modeling. The authors also intuitively explain the theory and logic behind real data analysis, incorporating a range of application examples from the social, economic, biological, medical, physical, and engineering sciences. Enabling your students to answer the why behind statistical methods, this text teaches them how to successfully draw conclusions when the premises are flawed. It empowers them to use advanced statistical methods with confidence and develop their own statistical recipes. Ancillary materials are available on the book’s website.
Publisher: CRC Press
ISBN: 1466512105
Category : Mathematics
Languages : en
Pages : 572
Book Description
Providing a much-needed bridge between elementary statistics courses and advanced research methods courses, Understanding Advanced Statistical Methods helps students grasp the fundamental assumptions and machinery behind sophisticated statistical topics, such as logistic regression, maximum likelihood, bootstrapping, nonparametrics, and Bayesian methods. The book teaches students how to properly model, think critically, and design their own studies to avoid common errors. It leads them to think differently not only about math and statistics but also about general research and the scientific method. With a focus on statistical models as producers of data, the book enables students to more easily understand the machinery of advanced statistics. It also downplays the "population" interpretation of statistical models and presents Bayesian methods before frequentist ones. Requiring no prior calculus experience, the text employs a "just-in-time" approach that introduces mathematical topics, including calculus, where needed. Formulas throughout the text are used to explain why calculus and probability are essential in statistical modeling. The authors also intuitively explain the theory and logic behind real data analysis, incorporating a range of application examples from the social, economic, biological, medical, physical, and engineering sciences. Enabling your students to answer the why behind statistical methods, this text teaches them how to successfully draw conclusions when the premises are flawed. It empowers them to use advanced statistical methods with confidence and develop their own statistical recipes. Ancillary materials are available on the book’s website.