Author: Mani Lakshminarayanan
Publisher: CRC Press
ISBN: 1351584162
Category : Business & Economics
Languages : en
Pages : 497
Book Description
The cost for bringing new medicine from discovery to market has nearly doubled in the last decade and has now reached $2.6 billion. There is an urgent need to make drug development less time-consuming and less costly. Innovative trial designs/ analyses such as the Bayesian approach are essential to meet this need. This book will be the first to provide comprehensive coverage of Bayesian applications across the span of drug development, from discovery, to clinical trial, to manufacturing with practical examples. This book will have a wide appeal to statisticians, scientists, and physicians working in drug development who are motivated to accelerate and streamline the drug development process, as well as students who aspire to work in this field. The advantages of this book are: Provides motivating, worked, practical case examples with easy to grasp models, technical details, and computational codes to run the analyses Balances practical examples with best practices on trial simulation and reporting, as well as regulatory perspectives Chapters written by authors who are individual contributors in their respective topics Dr. Mani Lakshminarayanan is a researcher and statistical consultant with more than 30 years of experience in the pharmaceutical industry. He has published over 50 articles, technical reports, and book chapters besides serving as a referee for several journals. He has a PhD in Statistics from Southern Methodist University, Dallas, Texas and is a Fellow of the American Statistical Association. Dr. Fanni Natanegara has over 15 years of pharmaceutical experience and is currently Principal Research Scientist and Group Leader for the Early Phase Neuroscience Statistics team at Eli Lilly and Company. She played a key role in the Advanced Analytics team to provide Bayesian education and statistical consultation at Eli Lilly. Dr. Natanegara is the chair of the cross industry-regulatory-academic DIA BSWG to ensure that Bayesian methods are appropriately utilized for design and analysis throughout the drug-development process.
Bayesian Applications in Pharmaceutical Development
Author: Mani Lakshminarayanan
Publisher: CRC Press
ISBN: 1351584162
Category : Business & Economics
Languages : en
Pages : 497
Book Description
The cost for bringing new medicine from discovery to market has nearly doubled in the last decade and has now reached $2.6 billion. There is an urgent need to make drug development less time-consuming and less costly. Innovative trial designs/ analyses such as the Bayesian approach are essential to meet this need. This book will be the first to provide comprehensive coverage of Bayesian applications across the span of drug development, from discovery, to clinical trial, to manufacturing with practical examples. This book will have a wide appeal to statisticians, scientists, and physicians working in drug development who are motivated to accelerate and streamline the drug development process, as well as students who aspire to work in this field. The advantages of this book are: Provides motivating, worked, practical case examples with easy to grasp models, technical details, and computational codes to run the analyses Balances practical examples with best practices on trial simulation and reporting, as well as regulatory perspectives Chapters written by authors who are individual contributors in their respective topics Dr. Mani Lakshminarayanan is a researcher and statistical consultant with more than 30 years of experience in the pharmaceutical industry. He has published over 50 articles, technical reports, and book chapters besides serving as a referee for several journals. He has a PhD in Statistics from Southern Methodist University, Dallas, Texas and is a Fellow of the American Statistical Association. Dr. Fanni Natanegara has over 15 years of pharmaceutical experience and is currently Principal Research Scientist and Group Leader for the Early Phase Neuroscience Statistics team at Eli Lilly and Company. She played a key role in the Advanced Analytics team to provide Bayesian education and statistical consultation at Eli Lilly. Dr. Natanegara is the chair of the cross industry-regulatory-academic DIA BSWG to ensure that Bayesian methods are appropriately utilized for design and analysis throughout the drug-development process.
Publisher: CRC Press
ISBN: 1351584162
Category : Business & Economics
Languages : en
Pages : 497
Book Description
The cost for bringing new medicine from discovery to market has nearly doubled in the last decade and has now reached $2.6 billion. There is an urgent need to make drug development less time-consuming and less costly. Innovative trial designs/ analyses such as the Bayesian approach are essential to meet this need. This book will be the first to provide comprehensive coverage of Bayesian applications across the span of drug development, from discovery, to clinical trial, to manufacturing with practical examples. This book will have a wide appeal to statisticians, scientists, and physicians working in drug development who are motivated to accelerate and streamline the drug development process, as well as students who aspire to work in this field. The advantages of this book are: Provides motivating, worked, practical case examples with easy to grasp models, technical details, and computational codes to run the analyses Balances practical examples with best practices on trial simulation and reporting, as well as regulatory perspectives Chapters written by authors who are individual contributors in their respective topics Dr. Mani Lakshminarayanan is a researcher and statistical consultant with more than 30 years of experience in the pharmaceutical industry. He has published over 50 articles, technical reports, and book chapters besides serving as a referee for several journals. He has a PhD in Statistics from Southern Methodist University, Dallas, Texas and is a Fellow of the American Statistical Association. Dr. Fanni Natanegara has over 15 years of pharmaceutical experience and is currently Principal Research Scientist and Group Leader for the Early Phase Neuroscience Statistics team at Eli Lilly and Company. She played a key role in the Advanced Analytics team to provide Bayesian education and statistical consultation at Eli Lilly. Dr. Natanegara is the chair of the cross industry-regulatory-academic DIA BSWG to ensure that Bayesian methods are appropriately utilized for design and analysis throughout the drug-development process.
Bayesian Analysis with R for Drug Development
Author: Harry Yang
Publisher: CRC Press
ISBN: 1351585932
Category : Mathematics
Languages : en
Pages : 251
Book Description
Drug development is an iterative process. The recent publications of regulatory guidelines further entail a lifecycle approach. Blending data from disparate sources, the Bayesian approach provides a flexible framework for drug development. Despite its advantages, the uptake of Bayesian methodologies is lagging behind in the field of pharmaceutical development. Written specifically for pharmaceutical practitioners, Bayesian Analysis with R for Drug Development: Concepts, Algorithms, and Case Studies, describes a wide range of Bayesian applications to problems throughout pre-clinical, clinical, and Chemistry, Manufacturing, and Control (CMC) development. Authored by two seasoned statisticians in the pharmaceutical industry, the book provides detailed Bayesian solutions to a broad array of pharmaceutical problems. Features Provides a single source of information on Bayesian statistics for drug development Covers a wide spectrum of pre-clinical, clinical, and CMC topics Demonstrates proper Bayesian applications using real-life examples Includes easy-to-follow R code with Bayesian Markov Chain Monte Carlo performed in both JAGS and Stan Bayesian software platforms Offers sufficient background for each problem and detailed description of solutions suitable for practitioners with limited Bayesian knowledge Harry Yang, Ph.D., is Senior Director and Head of Statistical Sciences at AstraZeneca. He has 24 years of experience across all aspects of drug research and development and extensive global regulatory experiences. He has published 6 statistical books, 15 book chapters, and over 90 peer-reviewed papers on diverse scientific and statistical subjects, including 15 joint statistical works with Dr. Novick. He is a frequent invited speaker at national and international conferences. He also developed statistical courses and conducted training at the FDA and USP as well as Peking University. Steven Novick, Ph.D., is Director of Statistical Sciences at AstraZeneca. He has extensively contributed statistical methods to the biopharmaceutical literature. Novick is a skilled Bayesian computer programmer and is frequently invited to speak at conferences, having developed and taught courses in several areas, including drug-combination analysis and Bayesian methods in clinical areas. Novick served on IPAC-RS and has chaired several national statistical conferences.
Publisher: CRC Press
ISBN: 1351585932
Category : Mathematics
Languages : en
Pages : 251
Book Description
Drug development is an iterative process. The recent publications of regulatory guidelines further entail a lifecycle approach. Blending data from disparate sources, the Bayesian approach provides a flexible framework for drug development. Despite its advantages, the uptake of Bayesian methodologies is lagging behind in the field of pharmaceutical development. Written specifically for pharmaceutical practitioners, Bayesian Analysis with R for Drug Development: Concepts, Algorithms, and Case Studies, describes a wide range of Bayesian applications to problems throughout pre-clinical, clinical, and Chemistry, Manufacturing, and Control (CMC) development. Authored by two seasoned statisticians in the pharmaceutical industry, the book provides detailed Bayesian solutions to a broad array of pharmaceutical problems. Features Provides a single source of information on Bayesian statistics for drug development Covers a wide spectrum of pre-clinical, clinical, and CMC topics Demonstrates proper Bayesian applications using real-life examples Includes easy-to-follow R code with Bayesian Markov Chain Monte Carlo performed in both JAGS and Stan Bayesian software platforms Offers sufficient background for each problem and detailed description of solutions suitable for practitioners with limited Bayesian knowledge Harry Yang, Ph.D., is Senior Director and Head of Statistical Sciences at AstraZeneca. He has 24 years of experience across all aspects of drug research and development and extensive global regulatory experiences. He has published 6 statistical books, 15 book chapters, and over 90 peer-reviewed papers on diverse scientific and statistical subjects, including 15 joint statistical works with Dr. Novick. He is a frequent invited speaker at national and international conferences. He also developed statistical courses and conducted training at the FDA and USP as well as Peking University. Steven Novick, Ph.D., is Director of Statistical Sciences at AstraZeneca. He has extensively contributed statistical methods to the biopharmaceutical literature. Novick is a skilled Bayesian computer programmer and is frequently invited to speak at conferences, having developed and taught courses in several areas, including drug-combination analysis and Bayesian methods in clinical areas. Novick served on IPAC-RS and has chaired several national statistical conferences.
Bayesian Applications in Pharmaceutical Development
Author: Mani Lakshminarayanan
Publisher: CRC Press
ISBN: 1351584170
Category : Business & Economics
Languages : en
Pages : 533
Book Description
The cost for bringing new medicine from discovery to market has nearly doubled in the last decade and has now reached $2.6 billion. There is an urgent need to make drug development less time-consuming and less costly. Innovative trial designs/ analyses such as the Bayesian approach are essential to meet this need. This book will be the first to provide comprehensive coverage of Bayesian applications across the span of drug development, from discovery, to clinical trial, to manufacturing with practical examples. This book will have a wide appeal to statisticians, scientists, and physicians working in drug development who are motivated to accelerate and streamline the drug development process, as well as students who aspire to work in this field. The advantages of this book are: Provides motivating, worked, practical case examples with easy to grasp models, technical details, and computational codes to run the analyses Balances practical examples with best practices on trial simulation and reporting, as well as regulatory perspectives Chapters written by authors who are individual contributors in their respective topics Dr. Mani Lakshminarayanan is a researcher and statistical consultant with more than 30 years of experience in the pharmaceutical industry. He has published over 50 articles, technical reports, and book chapters besides serving as a referee for several journals. He has a PhD in Statistics from Southern Methodist University, Dallas, Texas and is a Fellow of the American Statistical Association. Dr. Fanni Natanegara has over 15 years of pharmaceutical experience and is currently Principal Research Scientist and Group Leader for the Early Phase Neuroscience Statistics team at Eli Lilly and Company. She played a key role in the Advanced Analytics team to provide Bayesian education and statistical consultation at Eli Lilly. Dr. Natanegara is the chair of the cross industry-regulatory-academic DIA BSWG to ensure that Bayesian methods are appropriately utilized for design and analysis throughout the drug-development process.
Publisher: CRC Press
ISBN: 1351584170
Category : Business & Economics
Languages : en
Pages : 533
Book Description
The cost for bringing new medicine from discovery to market has nearly doubled in the last decade and has now reached $2.6 billion. There is an urgent need to make drug development less time-consuming and less costly. Innovative trial designs/ analyses such as the Bayesian approach are essential to meet this need. This book will be the first to provide comprehensive coverage of Bayesian applications across the span of drug development, from discovery, to clinical trial, to manufacturing with practical examples. This book will have a wide appeal to statisticians, scientists, and physicians working in drug development who are motivated to accelerate and streamline the drug development process, as well as students who aspire to work in this field. The advantages of this book are: Provides motivating, worked, practical case examples with easy to grasp models, technical details, and computational codes to run the analyses Balances practical examples with best practices on trial simulation and reporting, as well as regulatory perspectives Chapters written by authors who are individual contributors in their respective topics Dr. Mani Lakshminarayanan is a researcher and statistical consultant with more than 30 years of experience in the pharmaceutical industry. He has published over 50 articles, technical reports, and book chapters besides serving as a referee for several journals. He has a PhD in Statistics from Southern Methodist University, Dallas, Texas and is a Fellow of the American Statistical Association. Dr. Fanni Natanegara has over 15 years of pharmaceutical experience and is currently Principal Research Scientist and Group Leader for the Early Phase Neuroscience Statistics team at Eli Lilly and Company. She played a key role in the Advanced Analytics team to provide Bayesian education and statistical consultation at Eli Lilly. Dr. Natanegara is the chair of the cross industry-regulatory-academic DIA BSWG to ensure that Bayesian methods are appropriately utilized for design and analysis throughout the drug-development process.
Bayesian Methods in Pharmaceutical Research
Author: Emmanuel Lesaffre
Publisher: CRC Press
ISBN: 1351718673
Category : Medical
Languages : en
Pages : 547
Book Description
Since the early 2000s, there has been increasing interest within the pharmaceutical industry in the application of Bayesian methods at various stages of the research, development, manufacturing, and health economic evaluation of new health care interventions. In 2010, the first Applied Bayesian Biostatistics conference was held, with the primary objective to stimulate the practical implementation of Bayesian statistics, and to promote the added-value for accelerating the discovery and the delivery of new cures to patients. This book is a synthesis of the conferences and debates, providing an overview of Bayesian methods applied to nearly all stages of research and development, from early discovery to portfolio management. It highlights the value associated with sharing a vision with the regulatory authorities, academia, and pharmaceutical industry, with a view to setting up a common strategy for the appropriate use of Bayesian statistics for the benefit of patients. The book covers: Theory, methods, applications, and computing Bayesian biostatistics for clinical innovative designs Adding value with Real World Evidence Opportunities for rare, orphan diseases, and pediatric development Applied Bayesian biostatistics in manufacturing Decision making and Portfolio management Regulatory perspective and public health policies Statisticians and data scientists involved in the research, development, and approval of new cures will be inspired by the possible applications of Bayesian methods covered in the book. The methods, applications, and computational guidance will enable the reader to apply Bayesian methods in their own pharmaceutical research.
Publisher: CRC Press
ISBN: 1351718673
Category : Medical
Languages : en
Pages : 547
Book Description
Since the early 2000s, there has been increasing interest within the pharmaceutical industry in the application of Bayesian methods at various stages of the research, development, manufacturing, and health economic evaluation of new health care interventions. In 2010, the first Applied Bayesian Biostatistics conference was held, with the primary objective to stimulate the practical implementation of Bayesian statistics, and to promote the added-value for accelerating the discovery and the delivery of new cures to patients. This book is a synthesis of the conferences and debates, providing an overview of Bayesian methods applied to nearly all stages of research and development, from early discovery to portfolio management. It highlights the value associated with sharing a vision with the regulatory authorities, academia, and pharmaceutical industry, with a view to setting up a common strategy for the appropriate use of Bayesian statistics for the benefit of patients. The book covers: Theory, methods, applications, and computing Bayesian biostatistics for clinical innovative designs Adding value with Real World Evidence Opportunities for rare, orphan diseases, and pediatric development Applied Bayesian biostatistics in manufacturing Decision making and Portfolio management Regulatory perspective and public health policies Statisticians and data scientists involved in the research, development, and approval of new cures will be inspired by the possible applications of Bayesian methods covered in the book. The methods, applications, and computational guidance will enable the reader to apply Bayesian methods in their own pharmaceutical research.
Bayesian Adaptive Methods for Clinical Trials
Author: Scott M. Berry
Publisher: CRC Press
ISBN: 1439825513
Category : Mathematics
Languages : en
Pages : 316
Book Description
Already popular in the analysis of medical device trials, adaptive Bayesian designs are increasingly being used in drug development for a wide variety of diseases and conditions, from Alzheimer's disease and multiple sclerosis to obesity, diabetes, hepatitis C, and HIV. Written by leading pioneers of Bayesian clinical trial designs, Bayesian Adapti
Publisher: CRC Press
ISBN: 1439825513
Category : Mathematics
Languages : en
Pages : 316
Book Description
Already popular in the analysis of medical device trials, adaptive Bayesian designs are increasingly being used in drug development for a wide variety of diseases and conditions, from Alzheimer's disease and multiple sclerosis to obesity, diabetes, hepatitis C, and HIV. Written by leading pioneers of Bayesian clinical trial designs, Bayesian Adapti
Real-World Evidence in Drug Development and Evaluation
Author: Harry Yang
Publisher: CRC Press
ISBN: 0429676824
Category : Mathematics
Languages : en
Pages : 191
Book Description
Real-world evidence (RWE) has been at the forefront of pharmaceutical innovations. It plays an important role in transforming drug development from a process aimed at meeting regulatory expectations to an operating model that leverages data from disparate sources to aid business, regulatory, and healthcare decision making. Despite its many benefits, there is no single book systematically covering the latest development in the field. Written specifically for pharmaceutical practitioners, Real-World Evidence in Drug Development and Evaluation, presents a wide range of RWE applications throughout the lifecycle of drug product development. With contributions from experienced researchers in the pharmaceutical industry, the book discusses at length RWE opportunities, challenges, and solutions. Features Provides the first book and a single source of information on RWE in drug development Covers a broad array of topics on outcomes- and value-based RWE assessments Demonstrates proper Bayesian application and causal inference for real-world data (RWD) Presents real-world use cases to illustrate the use of advanced analytics and statistical methods to generate insights Offers a balanced discussion of practical RWE issues at hand and technical solutions suitable for practitioners with limited data science expertise
Publisher: CRC Press
ISBN: 0429676824
Category : Mathematics
Languages : en
Pages : 191
Book Description
Real-world evidence (RWE) has been at the forefront of pharmaceutical innovations. It plays an important role in transforming drug development from a process aimed at meeting regulatory expectations to an operating model that leverages data from disparate sources to aid business, regulatory, and healthcare decision making. Despite its many benefits, there is no single book systematically covering the latest development in the field. Written specifically for pharmaceutical practitioners, Real-World Evidence in Drug Development and Evaluation, presents a wide range of RWE applications throughout the lifecycle of drug product development. With contributions from experienced researchers in the pharmaceutical industry, the book discusses at length RWE opportunities, challenges, and solutions. Features Provides the first book and a single source of information on RWE in drug development Covers a broad array of topics on outcomes- and value-based RWE assessments Demonstrates proper Bayesian application and causal inference for real-world data (RWD) Presents real-world use cases to illustrate the use of advanced analytics and statistical methods to generate insights Offers a balanced discussion of practical RWE issues at hand and technical solutions suitable for practitioners with limited data science expertise
Handbook of Adaptive Designs in Pharmaceutical and Clinical Development
Author: Annpey Pong
Publisher: CRC Press
ISBN: 1439810176
Category : Mathematics
Languages : en
Pages : 475
Book Description
In response to the US FDA's Critical Path Initiative, innovative adaptive designs are being used more and more in clinical trials due to their flexibility and efficiency, especially during early phase development. Handbook of Adaptive Designs in Pharmaceutical and Clinical Development provides a comprehensive and unified presentation of the princip
Publisher: CRC Press
ISBN: 1439810176
Category : Mathematics
Languages : en
Pages : 475
Book Description
In response to the US FDA's Critical Path Initiative, innovative adaptive designs are being used more and more in clinical trials due to their flexibility and efficiency, especially during early phase development. Handbook of Adaptive Designs in Pharmaceutical and Clinical Development provides a comprehensive and unified presentation of the princip
Bayesian Approaches to Clinical Trials and Health-Care Evaluation
Author: David J. Spiegelhalter
Publisher: John Wiley & Sons
ISBN: 9780471499756
Category : Mathematics
Languages : en
Pages : 416
Book Description
READ ALL ABOUT IT! David Spiegelhalter has recently joined the ranks of Isaac Newton, Charles Darwin and Stephen Hawking by becoming a fellow of the Royal Society. Originating from the Medical Research Council’s biostatistics unit, David has played a leading role in the Bristol heart surgery and Harold Shipman inquiries. Order a copy of this author’s comprehensive text TODAY! The Bayesian approach involves synthesising data and judgement in order to reach conclusions about unknown quantities and make predictions. Bayesian methods have become increasingly popular in recent years, notably in medical research, and although there are a number of books on Bayesian analysis, few cover clinical trials and biostatistical applications in any detail. Bayesian Approaches to Clinical Trials and Health-Care Evaluation provides a valuable overview of this rapidly evolving field, including basic Bayesian ideas, prior distributions, clinical trials, observational studies, evidence synthesis and cost-effectiveness analysis. Covers a broad array of essential topics, building from the basics to more advanced techniques. Illustrated throughout by detailed case studies and worked examples Includes exercises in all chapters Accessible to anyone with a basic knowledge of statistics Authors are at the forefront of research into Bayesian methods in medical research Accompanied by a Web site featuring data sets and worked examples using Excel and WinBUGS - the most widely used Bayesian modelling package Bayesian Approaches to Clinical Trials and Health-Care Evaluation is suitable for students and researchers in medical statistics, statisticians in the pharmaceutical industry, and anyone involved in conducting clinical trials and assessment of health-care technology.
Publisher: John Wiley & Sons
ISBN: 9780471499756
Category : Mathematics
Languages : en
Pages : 416
Book Description
READ ALL ABOUT IT! David Spiegelhalter has recently joined the ranks of Isaac Newton, Charles Darwin and Stephen Hawking by becoming a fellow of the Royal Society. Originating from the Medical Research Council’s biostatistics unit, David has played a leading role in the Bristol heart surgery and Harold Shipman inquiries. Order a copy of this author’s comprehensive text TODAY! The Bayesian approach involves synthesising data and judgement in order to reach conclusions about unknown quantities and make predictions. Bayesian methods have become increasingly popular in recent years, notably in medical research, and although there are a number of books on Bayesian analysis, few cover clinical trials and biostatistical applications in any detail. Bayesian Approaches to Clinical Trials and Health-Care Evaluation provides a valuable overview of this rapidly evolving field, including basic Bayesian ideas, prior distributions, clinical trials, observational studies, evidence synthesis and cost-effectiveness analysis. Covers a broad array of essential topics, building from the basics to more advanced techniques. Illustrated throughout by detailed case studies and worked examples Includes exercises in all chapters Accessible to anyone with a basic knowledge of statistics Authors are at the forefront of research into Bayesian methods in medical research Accompanied by a Web site featuring data sets and worked examples using Excel and WinBUGS - the most widely used Bayesian modelling package Bayesian Approaches to Clinical Trials and Health-Care Evaluation is suitable for students and researchers in medical statistics, statisticians in the pharmaceutical industry, and anyone involved in conducting clinical trials and assessment of health-care technology.
Bayesian Analysis with R for Drug Development
Author: Harry Yang
Publisher: CRC Press
ISBN: 1351585940
Category : Mathematics
Languages : en
Pages : 310
Book Description
Drug development is an iterative process. The recent publications of regulatory guidelines further entail a lifecycle approach. Blending data from disparate sources, the Bayesian approach provides a flexible framework for drug development. Despite its advantages, the uptake of Bayesian methodologies is lagging behind in the field of pharmaceutical development. Written specifically for pharmaceutical practitioners, Bayesian Analysis with R for Drug Development: Concepts, Algorithms, and Case Studies, describes a wide range of Bayesian applications to problems throughout pre-clinical, clinical, and Chemistry, Manufacturing, and Control (CMC) development. Authored by two seasoned statisticians in the pharmaceutical industry, the book provides detailed Bayesian solutions to a broad array of pharmaceutical problems. Features Provides a single source of information on Bayesian statistics for drug development Covers a wide spectrum of pre-clinical, clinical, and CMC topics Demonstrates proper Bayesian applications using real-life examples Includes easy-to-follow R code with Bayesian Markov Chain Monte Carlo performed in both JAGS and Stan Bayesian software platforms Offers sufficient background for each problem and detailed description of solutions suitable for practitioners with limited Bayesian knowledge Harry Yang, Ph.D., is Senior Director and Head of Statistical Sciences at AstraZeneca. He has 24 years of experience across all aspects of drug research and development and extensive global regulatory experiences. He has published 6 statistical books, 15 book chapters, and over 90 peer-reviewed papers on diverse scientific and statistical subjects, including 15 joint statistical works with Dr. Novick. He is a frequent invited speaker at national and international conferences. He also developed statistical courses and conducted training at the FDA and USP as well as Peking University. Steven Novick, Ph.D., is Director of Statistical Sciences at AstraZeneca. He has extensively contributed statistical methods to the biopharmaceutical literature. Novick is a skilled Bayesian computer programmer and is frequently invited to speak at conferences, having developed and taught courses in several areas, including drug-combination analysis and Bayesian methods in clinical areas. Novick served on IPAC-RS and has chaired several national statistical conferences.
Publisher: CRC Press
ISBN: 1351585940
Category : Mathematics
Languages : en
Pages : 310
Book Description
Drug development is an iterative process. The recent publications of regulatory guidelines further entail a lifecycle approach. Blending data from disparate sources, the Bayesian approach provides a flexible framework for drug development. Despite its advantages, the uptake of Bayesian methodologies is lagging behind in the field of pharmaceutical development. Written specifically for pharmaceutical practitioners, Bayesian Analysis with R for Drug Development: Concepts, Algorithms, and Case Studies, describes a wide range of Bayesian applications to problems throughout pre-clinical, clinical, and Chemistry, Manufacturing, and Control (CMC) development. Authored by two seasoned statisticians in the pharmaceutical industry, the book provides detailed Bayesian solutions to a broad array of pharmaceutical problems. Features Provides a single source of information on Bayesian statistics for drug development Covers a wide spectrum of pre-clinical, clinical, and CMC topics Demonstrates proper Bayesian applications using real-life examples Includes easy-to-follow R code with Bayesian Markov Chain Monte Carlo performed in both JAGS and Stan Bayesian software platforms Offers sufficient background for each problem and detailed description of solutions suitable for practitioners with limited Bayesian knowledge Harry Yang, Ph.D., is Senior Director and Head of Statistical Sciences at AstraZeneca. He has 24 years of experience across all aspects of drug research and development and extensive global regulatory experiences. He has published 6 statistical books, 15 book chapters, and over 90 peer-reviewed papers on diverse scientific and statistical subjects, including 15 joint statistical works with Dr. Novick. He is a frequent invited speaker at national and international conferences. He also developed statistical courses and conducted training at the FDA and USP as well as Peking University. Steven Novick, Ph.D., is Director of Statistical Sciences at AstraZeneca. He has extensively contributed statistical methods to the biopharmaceutical literature. Novick is a skilled Bayesian computer programmer and is frequently invited to speak at conferences, having developed and taught courses in several areas, including drug-combination analysis and Bayesian methods in clinical areas. Novick served on IPAC-RS and has chaired several national statistical conferences.
Monte Carlo Simulation for the Pharmaceutical Industry
Author: Mark Chang
Publisher: CRC Press
ISBN: 1439835934
Category : Mathematics
Languages : en
Pages : 566
Book Description
Helping you become a creative, logical thinker and skillful "simulator," Monte Carlo Simulation for the Pharmaceutical Industry: Concepts, Algorithms, and Case Studies provides broad coverage of the entire drug development process, from drug discovery to preclinical and clinical trial aspects to commercialization. It presents the theories and metho
Publisher: CRC Press
ISBN: 1439835934
Category : Mathematics
Languages : en
Pages : 566
Book Description
Helping you become a creative, logical thinker and skillful "simulator," Monte Carlo Simulation for the Pharmaceutical Industry: Concepts, Algorithms, and Case Studies provides broad coverage of the entire drug development process, from drug discovery to preclinical and clinical trial aspects to commercialization. It presents the theories and metho