Basic Global Relative Invariants for Homogeneous Linear Differential Equations

Basic Global Relative Invariants for Homogeneous Linear Differential Equations PDF Author: Roger Chalkley
Publisher: American Mathematical Soc.
ISBN: 0821827812
Category : Mathematics
Languages : en
Pages : 223

Get Book Here

Book Description
Given any fixed integer $m \ge 3$, the author presents simple formulas for $m - 2$ algebraically independent polynomials over $\mathbb{Q}$ having the remarkable property, with respect to transformations of homogeneous linear differential equations of order $m$, that each polynomial is both a semi-invariant of the first kind (with respect to changes of the dependent variable) and a semi-invariant of the second kind (with respect to changes of the independent variable). These relative invariants are suitable for global studies in several different contexts and do not require Laguerre-Forsyth reductions for their evaluation. In contrast, all of the general formulas for basic relative invariants that have been proposed by other researchers during the last 113 years are merely local ones that are either much too complicated or require a Laguerre-Forsyth reduction for each evaluation.

Basic Global Relative Invariants for Homogeneous Linear Differential Equations

Basic Global Relative Invariants for Homogeneous Linear Differential Equations PDF Author: Roger Chalkley
Publisher: American Mathematical Soc.
ISBN: 0821827812
Category : Mathematics
Languages : en
Pages : 223

Get Book Here

Book Description
Given any fixed integer $m \ge 3$, the author presents simple formulas for $m - 2$ algebraically independent polynomials over $\mathbb{Q}$ having the remarkable property, with respect to transformations of homogeneous linear differential equations of order $m$, that each polynomial is both a semi-invariant of the first kind (with respect to changes of the dependent variable) and a semi-invariant of the second kind (with respect to changes of the independent variable). These relative invariants are suitable for global studies in several different contexts and do not require Laguerre-Forsyth reductions for their evaluation. In contrast, all of the general formulas for basic relative invariants that have been proposed by other researchers during the last 113 years are merely local ones that are either much too complicated or require a Laguerre-Forsyth reduction for each evaluation.

Basic Global Relative Invariants for Nonlinear Differential Equations

Basic Global Relative Invariants for Nonlinear Differential Equations PDF Author: Roger Chalkley
Publisher: American Mathematical Soc.
ISBN: 0821839918
Category : Mathematics
Languages : en
Pages : 386

Get Book Here

Book Description
The problem of deducing the basic relative invariants possessed by monic homogeneous linear differential equations of order $m$ was initiated in 1879 with Edmund Laguerre's success for the special case $m = 3$. It was solved in number 744 of the Memoirs of the AMS (March 2002), by a procedure that explicitly constructs, for any $m \geq3$, each of the $m - 2$ basic relative invariants. During that 123-year time span, only a few results were published about the basic relative invariants for other classes of ordinary differential equations. With respect to any fixed integer $\, m \geq 1$, the author begins by explicitly specifying the basic relative invariants for the class $\, \mathcal{C {m,2 $ that contains equations like $Q {m = 0$ in which $Q {m $ is a quadratic form in $y(z), \, \dots, \, y{(m) (z)$ having meromorphic coefficients written symmetrically and the coefficient of $\bigl( y{(m) (z) \bigr){2 $ is $1$.Then, in terms of any fixed positive integers $m$ and $n$, the author explicitly specifies the basic relative invariants for the class $\, \mathcal{C {m, n $ that contains equations like $H {m, n = 0$ in which $H {m, n $ is an $n$th-degree form in $y(z), \, \dots, \, y{(m) (z)$ having meromorphic coefficients written symmetrically and the coefficient of $\bigl( y{(m) (z) \bigr){n $ is $1$.These results enable the author to obtain the basic relative invariants for additional classes of ordinary differential equa

Exponentially Small Splitting of Invariant Manifolds of Parabolic Points

Exponentially Small Splitting of Invariant Manifolds of Parabolic Points PDF Author:
Publisher: American Mathematical Soc.
ISBN: 0821834452
Category :
Languages : en
Pages : 102

Get Book Here

Book Description


On the Splitting of Invariant Manifolds in Multidimensional Near-Integrable Hamiltonian Systems

On the Splitting of Invariant Manifolds in Multidimensional Near-Integrable Hamiltonian Systems PDF Author: Pierre Lochak
Publisher: American Mathematical Soc.
ISBN: 0821832689
Category : Mathematics
Languages : en
Pages : 162

Get Book Here

Book Description
Presents the problem of the splitting of invariant manifolds in multidimensional Hamiltonian systems, stressing the canonical features of the problem. This book offers introduction of a canonically invariant scheme for the computation of the splitting matrix.

Elliptic Partial Differential Operators and Symplectic Algebra

Elliptic Partial Differential Operators and Symplectic Algebra PDF Author: William Norrie Everitt
Publisher: American Mathematical Soc.
ISBN: 0821832352
Category : Mathematics
Languages : en
Pages : 130

Get Book Here

Book Description
This investigation introduces a new description and classification for the set of all self-adjoint operators (not just those defined by differential boundary conditions) which are generated by a linear elliptic partial differential expression $A(\mathbf{x}, D)=\sum_{0\, \leq\, \left s\right \, \leq\,2m}a_{s} (\mathbf{x})D DEGREES{s}\;\text{for all}\;\mathbf{x}\in\Omega$ in a region $\Omega$, with compact closure $\overline{\Omega}$ and $C DEGREES{\infty }$-smooth boundary $\partial\Omega$, in Euclidean space $\mathbb{E} DEGREES{r}$ $(r\geq2).$ The order $2m\geq2$ and the spatial dimensio

Classification and Probabilistic Representation of the Positive Solutions of a Semilinear Elliptic Equation

Classification and Probabilistic Representation of the Positive Solutions of a Semilinear Elliptic Equation PDF Author: BenoƮt Mselati
Publisher: American Mathematical Soc.
ISBN: 0821835092
Category : Mathematics
Languages : en
Pages : 146

Get Book Here

Book Description
Concerned with the nonnegative solutions of $\Delta u = u^2$ in a bounded and smooth domain in $\mathbb{R}^d$, this title intends to prove that they are uniquely determined by their fine trace on the boundary as defined in [DK98a], answering a major open question of [Dy02].

The $RO(G)$-Graded Equivariant Ordinary Homology of $G$-Cell Complexes with Even-Dimensional Cells for $G=\mathbb {Z}/p$

The $RO(G)$-Graded Equivariant Ordinary Homology of $G$-Cell Complexes with Even-Dimensional Cells for $G=\mathbb {Z}/p$ PDF Author:
Publisher: American Mathematical Soc.
ISBN: 0821834614
Category :
Languages : en
Pages : 146

Get Book Here

Book Description


Homogeneous Spaces, Tits Buildings, and Isoparametric Hypersurfaces

Homogeneous Spaces, Tits Buildings, and Isoparametric Hypersurfaces PDF Author: Linus Kramer
Publisher: American Mathematical Soc.
ISBN: 0821829068
Category : Mathematics
Languages : en
Pages : 137

Get Book Here

Book Description
This title classifys 1-connected compact homogeneous spaces which have the same rational cohomology as a product of spheres $\mahtbb{S} DEGREES{n_1}\times\mathbb{S} DEGREES{n_2}$, with $3\leq n_1\leq n_2$ and $n_2$ odd. As an application, it classifys compact generalized quadrangles (buildings of type $C_2)$ which admit a point transitive automorphism group, and isoparametric hypersurfaces which admit a transitive isometry group on one f

Segre's Reflexivity and an Inductive Characterization of Hyperquadrics

Segre's Reflexivity and an Inductive Characterization of Hyperquadrics PDF Author: Yasuyuki Kachi
Publisher: American Mathematical Soc.
ISBN: 0821832255
Category : Mathematics
Languages : en
Pages : 133

Get Book Here

Book Description
Introduction The universal pseudo-quotient for a family of subvarieties Normal bundles of quadrics in $X$ Morphisms from quadrics to Grassmannians Pointwise uniform vector bundles on non-singular quadrics Theory of extensions of families over Hilbert schemes Existence of algebraic quotient--proof of Theorem 0.3 Appendix. Deformations of vector bundles on infinitesimally rigid projective varieties with null global $i$-forms References

The $AB$ Program in Geometric Analysis: Sharp Sobolev Inequalities and Related Problems

The $AB$ Program in Geometric Analysis: Sharp Sobolev Inequalities and Related Problems PDF Author: Olivier Druet
Publisher: American Mathematical Soc.
ISBN: 0821829890
Category : Mathematics
Languages : en
Pages : 113

Get Book Here

Book Description
Function theory and Sobolev inequalities have been the target of investigation for many years. Sharp constants in these inequalities constitute a critical tool in geometric analysis. The $AB$ programme is concerned with sharp Sobolev inequalities on compact Riemannian manifolds. This text summarizes the results of contemporary research and gives an up-to-date report on the field.