Author: George David Birkhoff
Publisher: American Mathematical Soc.
ISBN: 0821826921
Category : Mathematics
Languages : en
Pages : 164
Book Description
Lesson plan outline: 9 lessons Lesson plan outline: 15 lessons Lesson plan outline: 19 lessons Lesson plan outline: 12 lessons Lesson plan outline: 27 lessons Lesson plan outline: 19 lessons Lesson plan outline: 17 lessons Lesson plan outline: 6 lessons Lesson plan outline: 14 lessons Lesson plan outline: 7 lessons
Basic Geometry: Manual for Teachers
Author: George David Birkhoff
Publisher: American Mathematical Soc.
ISBN: 0821826921
Category : Mathematics
Languages : en
Pages : 164
Book Description
Lesson plan outline: 9 lessons Lesson plan outline: 15 lessons Lesson plan outline: 19 lessons Lesson plan outline: 12 lessons Lesson plan outline: 27 lessons Lesson plan outline: 19 lessons Lesson plan outline: 17 lessons Lesson plan outline: 6 lessons Lesson plan outline: 14 lessons Lesson plan outline: 7 lessons
Publisher: American Mathematical Soc.
ISBN: 0821826921
Category : Mathematics
Languages : en
Pages : 164
Book Description
Lesson plan outline: 9 lessons Lesson plan outline: 15 lessons Lesson plan outline: 19 lessons Lesson plan outline: 12 lessons Lesson plan outline: 27 lessons Lesson plan outline: 19 lessons Lesson plan outline: 17 lessons Lesson plan outline: 6 lessons Lesson plan outline: 14 lessons Lesson plan outline: 7 lessons
Basic Geometry
Author: Jurgensen
Publisher: Houghton Mifflin
ISBN: 9780395501207
Category : Geometry
Languages : en
Pages : 0
Book Description
Publisher: Houghton Mifflin
ISBN: 9780395501207
Category : Geometry
Languages : en
Pages : 0
Book Description
Drawing Geometry
Author:
Publisher: Floris Books - Floris Books
ISBN: 9780863156083
Category : Architecture
Languages : en
Pages : 86
Book Description
Geometry is both elegantly simple and infinitely profound. Many professionals find they need to be able to draw geometric shapes accurately, and this unique book shows them how. It provides step-by-step instructions for constructing two-dimensional geometric shapes, which can be readily followed by a beginner, or used as an invaluable source book by students and professionals.
Publisher: Floris Books - Floris Books
ISBN: 9780863156083
Category : Architecture
Languages : en
Pages : 86
Book Description
Geometry is both elegantly simple and infinitely profound. Many professionals find they need to be able to draw geometric shapes accurately, and this unique book shows them how. It provides step-by-step instructions for constructing two-dimensional geometric shapes, which can be readily followed by a beginner, or used as an invaluable source book by students and professionals.
Basic Geometry of Voting
Author: Donald G. Saari
Publisher: Springer Science & Business Media
ISBN: 9783540600640
Category : Business & Economics
Languages : en
Pages : 324
Book Description
Amazingly, the complexities of voting theory can be explained and resolved with comfortable geometry. A geometry which unifies such seemingly disparate topics as manipulation, monotonicity, and even the apportionment issues of the US Supreme Court. Although directed mainly toward students and others wishing to learn about voting, experts will discover here many previously unpublished results. As an example, a new profile decomposition quickly resolves the age-old controversies of Condorcet and Borda, demonstrates that the rankings of pairwise and other methods differ because they rely on different information, casts serious doubt on the reliability of a Condorcet winner as a standard for the field, makes the famous Arrow's Theorem predictable, and simplifies the construction of examples.
Publisher: Springer Science & Business Media
ISBN: 9783540600640
Category : Business & Economics
Languages : en
Pages : 324
Book Description
Amazingly, the complexities of voting theory can be explained and resolved with comfortable geometry. A geometry which unifies such seemingly disparate topics as manipulation, monotonicity, and even the apportionment issues of the US Supreme Court. Although directed mainly toward students and others wishing to learn about voting, experts will discover here many previously unpublished results. As an example, a new profile decomposition quickly resolves the age-old controversies of Condorcet and Borda, demonstrates that the rankings of pairwise and other methods differ because they rely on different information, casts serious doubt on the reliability of a Condorcet winner as a standard for the field, makes the famous Arrow's Theorem predictable, and simplifies the construction of examples.
Geometry
Author: Israel M. Gelfand
Publisher: Springer Nature
ISBN: 1071602993
Category : Mathematics
Languages : en
Pages : 438
Book Description
This text is the fifth and final in the series of educational books written by Israel Gelfand with his colleagues for high school students. These books cover the basics of mathematics in a clear and simple format – the style Gelfand was known for internationally. Gelfand prepared these materials so as to be suitable for independent studies, thus allowing students to learn and practice the material at their own pace without a class. Geometry takes a different approach to presenting basic geometry for high-school students and others new to the subject. Rather than following the traditional axiomatic method that emphasizes formulae and logical deduction, it focuses on geometric constructions. Illustrations and problems are abundant throughout, and readers are encouraged to draw figures and “move” them in the plane, allowing them to develop and enhance their geometrical vision, imagination, and creativity. Chapters are structured so that only certain operations and the instruments to perform these operations are available for drawing objects and figures on the plane. This structure corresponds to presenting, sequentially, projective, affine, symplectic, and Euclidean geometries, all the while ensuring students have the necessary tools to follow along. Geometry is suitable for a large audience, which includes not only high school geometry students, but also teachers and anyone else interested in improving their geometrical vision and intuition, skills useful in many professions. Similarly, experienced mathematicians can appreciate the book’s unique way of presenting plane geometry in a simple form while adhering to its depth and rigor. “Gelfand was a great mathematician and also a great teacher. The book provides an atypical view of geometry. Gelfand gets to the intuitive core of geometry, to the phenomena of shapes and how they move in the plane, leading us to a better understanding of what coordinate geometry and axiomatic geometry seek to describe.” - Mark Saul, PhD, Executive Director, Julia Robinson Mathematics Festival “The subject matter is presented as intuitive, interesting and fun. No previous knowledge of the subject is required. Starting from the simplest concepts and by inculcating in the reader the use of visualization skills, [and] after reading the explanations and working through the examples, you will be able to confidently tackle the interesting problems posed. I highly recommend the book to any person interested in this fascinating branch of mathematics.” - Ricardo Gorrin, a student of the Extended Gelfand Correspondence Program in Mathematics (EGCPM)
Publisher: Springer Nature
ISBN: 1071602993
Category : Mathematics
Languages : en
Pages : 438
Book Description
This text is the fifth and final in the series of educational books written by Israel Gelfand with his colleagues for high school students. These books cover the basics of mathematics in a clear and simple format – the style Gelfand was known for internationally. Gelfand prepared these materials so as to be suitable for independent studies, thus allowing students to learn and practice the material at their own pace without a class. Geometry takes a different approach to presenting basic geometry for high-school students and others new to the subject. Rather than following the traditional axiomatic method that emphasizes formulae and logical deduction, it focuses on geometric constructions. Illustrations and problems are abundant throughout, and readers are encouraged to draw figures and “move” them in the plane, allowing them to develop and enhance their geometrical vision, imagination, and creativity. Chapters are structured so that only certain operations and the instruments to perform these operations are available for drawing objects and figures on the plane. This structure corresponds to presenting, sequentially, projective, affine, symplectic, and Euclidean geometries, all the while ensuring students have the necessary tools to follow along. Geometry is suitable for a large audience, which includes not only high school geometry students, but also teachers and anyone else interested in improving their geometrical vision and intuition, skills useful in many professions. Similarly, experienced mathematicians can appreciate the book’s unique way of presenting plane geometry in a simple form while adhering to its depth and rigor. “Gelfand was a great mathematician and also a great teacher. The book provides an atypical view of geometry. Gelfand gets to the intuitive core of geometry, to the phenomena of shapes and how they move in the plane, leading us to a better understanding of what coordinate geometry and axiomatic geometry seek to describe.” - Mark Saul, PhD, Executive Director, Julia Robinson Mathematics Festival “The subject matter is presented as intuitive, interesting and fun. No previous knowledge of the subject is required. Starting from the simplest concepts and by inculcating in the reader the use of visualization skills, [and] after reading the explanations and working through the examples, you will be able to confidently tackle the interesting problems posed. I highly recommend the book to any person interested in this fascinating branch of mathematics.” - Ricardo Gorrin, a student of the Extended Gelfand Correspondence Program in Mathematics (EGCPM)
Basic Algebraic Geometry 2
Author: Igor Rostislavovich Shafarevich
Publisher: Springer Science & Business Media
ISBN: 9783540575542
Category : Mathematics
Languages : en
Pages : 292
Book Description
The second volume of Shafarevich's introductory book on algebraic geometry focuses on schemes, complex algebraic varieties and complex manifolds. As with Volume 1 the author has revised the text and added new material, e.g. a section on real algebraic curves. Although the material is more advanced than in Volume 1 the algebraic apparatus is kept to a minimum making the book accessible to non-specialists. It can be read independently of Volume 1 and is suitable for beginning graduate students in mathematics as well as in theoretical physics.
Publisher: Springer Science & Business Media
ISBN: 9783540575542
Category : Mathematics
Languages : en
Pages : 292
Book Description
The second volume of Shafarevich's introductory book on algebraic geometry focuses on schemes, complex algebraic varieties and complex manifolds. As with Volume 1 the author has revised the text and added new material, e.g. a section on real algebraic curves. Although the material is more advanced than in Volume 1 the algebraic apparatus is kept to a minimum making the book accessible to non-specialists. It can be read independently of Volume 1 and is suitable for beginning graduate students in mathematics as well as in theoretical physics.
Basic Concepts of Synthetic Differential Geometry
Author: R. Lavendhomme
Publisher: Springer Science & Business Media
ISBN: 1475745885
Category : Mathematics
Languages : en
Pages : 331
Book Description
Starting at an introductory level, the book leads rapidly to important and often new results in synthetic differential geometry. From rudimentary analysis the book moves to such important results as: a new proof of De Rham's theorem; the synthetic view of global action, going as far as the Weil characteristic homomorphism; the systematic account of structured Lie objects, such as Riemannian, symplectic, or Poisson Lie objects; the view of global Lie algebras as Lie algebras of a Lie group in the synthetic sense; and lastly the synthetic construction of symplectic structure on the cotangent bundle in general. Thus while the book is limited to a naive point of view developing synthetic differential geometry as a theory in itself, the author nevertheless treats somewhat advanced topics, which are classic in classical differential geometry but new in the synthetic context. Audience: The book is suitable as an introduction to synthetic differential geometry for students as well as more qualified mathematicians.
Publisher: Springer Science & Business Media
ISBN: 1475745885
Category : Mathematics
Languages : en
Pages : 331
Book Description
Starting at an introductory level, the book leads rapidly to important and often new results in synthetic differential geometry. From rudimentary analysis the book moves to such important results as: a new proof of De Rham's theorem; the synthetic view of global action, going as far as the Weil characteristic homomorphism; the systematic account of structured Lie objects, such as Riemannian, symplectic, or Poisson Lie objects; the view of global Lie algebras as Lie algebras of a Lie group in the synthetic sense; and lastly the synthetic construction of symplectic structure on the cotangent bundle in general. Thus while the book is limited to a naive point of view developing synthetic differential geometry as a theory in itself, the author nevertheless treats somewhat advanced topics, which are classic in classical differential geometry but new in the synthetic context. Audience: The book is suitable as an introduction to synthetic differential geometry for students as well as more qualified mathematicians.
Introduction to Algebraic Geometry
Author: Steven Dale Cutkosky
Publisher: American Mathematical Soc.
ISBN: 1470435187
Category : Mathematics
Languages : en
Pages : 498
Book Description
This book presents a readable and accessible introductory course in algebraic geometry, with most of the fundamental classical results presented with complete proofs. An emphasis is placed on developing connections between geometric and algebraic aspects of the theory. Differences between the theory in characteristic and positive characteristic are emphasized. The basic tools of classical and modern algebraic geometry are introduced, including varieties, schemes, singularities, sheaves, sheaf cohomology, and intersection theory. Basic classical results on curves and surfaces are proved. More advanced topics such as ramification theory, Zariski's main theorem, and Bertini's theorems for general linear systems are presented, with proofs, in the final chapters. With more than 200 exercises, the book is an excellent resource for teaching and learning introductory algebraic geometry.
Publisher: American Mathematical Soc.
ISBN: 1470435187
Category : Mathematics
Languages : en
Pages : 498
Book Description
This book presents a readable and accessible introductory course in algebraic geometry, with most of the fundamental classical results presented with complete proofs. An emphasis is placed on developing connections between geometric and algebraic aspects of the theory. Differences between the theory in characteristic and positive characteristic are emphasized. The basic tools of classical and modern algebraic geometry are introduced, including varieties, schemes, singularities, sheaves, sheaf cohomology, and intersection theory. Basic classical results on curves and surfaces are proved. More advanced topics such as ramification theory, Zariski's main theorem, and Bertini's theorems for general linear systems are presented, with proofs, in the final chapters. With more than 200 exercises, the book is an excellent resource for teaching and learning introductory algebraic geometry.
Basic Concepts of Geometry
Author: Walter Prenowitz
Publisher: Rowman & Littlefield
ISBN: 9780912675480
Category : Mathematics
Languages : en
Pages : 380
Book Description
No descriptive material is available for this title.
Publisher: Rowman & Littlefield
ISBN: 9780912675480
Category : Mathematics
Languages : en
Pages : 380
Book Description
No descriptive material is available for this title.
Introduction to Geometry
Author: Harold Scott Macdonald Coxeter
Publisher:
ISBN:
Category :
Languages : en
Pages : 469
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 469
Book Description