Author: Jeff Barnes
Publisher: Microsoft Press
ISBN: 073569818X
Category : Computers
Languages : en
Pages : 393
Book Description
Microsoft Azure Essentials from Microsoft Press is a series of free ebooks designed to help you advance your technical skills with Microsoft Azure. This third ebook in the series introduces Microsoft Azure Machine Learning, a service that a developer can use to build predictive analytics models (using training datasets from a variety of data sources) and then easily deploy those models for consumption as cloud web services. The ebook presents an overview of modern data science theory and principles, the associated workflow, and then covers some of the more common machine learning algorithms in use today. It builds a variety of predictive analytics models using real world data, evaluates several different machine learning algorithms and modeling strategies, and then deploys the finished models as machine learning web services on Azure within a matter of minutes. The ebook also expands on a working Azure Machine Learning predictive model example to explore the types of client and server applications you can create to consume Azure Machine Learning web services. Watch Microsoft Press’s blog and Twitter (@MicrosoftPress) to learn about other free ebooks in the Microsoft Azure Essentials series.
Microsoft Azure Essentials Azure Machine Learning
Author: Jeff Barnes
Publisher: Microsoft Press
ISBN: 073569818X
Category : Computers
Languages : en
Pages : 393
Book Description
Microsoft Azure Essentials from Microsoft Press is a series of free ebooks designed to help you advance your technical skills with Microsoft Azure. This third ebook in the series introduces Microsoft Azure Machine Learning, a service that a developer can use to build predictive analytics models (using training datasets from a variety of data sources) and then easily deploy those models for consumption as cloud web services. The ebook presents an overview of modern data science theory and principles, the associated workflow, and then covers some of the more common machine learning algorithms in use today. It builds a variety of predictive analytics models using real world data, evaluates several different machine learning algorithms and modeling strategies, and then deploys the finished models as machine learning web services on Azure within a matter of minutes. The ebook also expands on a working Azure Machine Learning predictive model example to explore the types of client and server applications you can create to consume Azure Machine Learning web services. Watch Microsoft Press’s blog and Twitter (@MicrosoftPress) to learn about other free ebooks in the Microsoft Azure Essentials series.
Publisher: Microsoft Press
ISBN: 073569818X
Category : Computers
Languages : en
Pages : 393
Book Description
Microsoft Azure Essentials from Microsoft Press is a series of free ebooks designed to help you advance your technical skills with Microsoft Azure. This third ebook in the series introduces Microsoft Azure Machine Learning, a service that a developer can use to build predictive analytics models (using training datasets from a variety of data sources) and then easily deploy those models for consumption as cloud web services. The ebook presents an overview of modern data science theory and principles, the associated workflow, and then covers some of the more common machine learning algorithms in use today. It builds a variety of predictive analytics models using real world data, evaluates several different machine learning algorithms and modeling strategies, and then deploys the finished models as machine learning web services on Azure within a matter of minutes. The ebook also expands on a working Azure Machine Learning predictive model example to explore the types of client and server applications you can create to consume Azure Machine Learning web services. Watch Microsoft Press’s blog and Twitter (@MicrosoftPress) to learn about other free ebooks in the Microsoft Azure Essentials series.
Microsoft Azure Essentials - Fundamentals of Azure
Author: Michael Collier
Publisher: Microsoft Press
ISBN: 0735697302
Category : Computers
Languages : en
Pages : 400
Book Description
Microsoft Azure Essentials from Microsoft Press is a series of free ebooks designed to help you advance your technical skills with Microsoft Azure. The first ebook in the series, Microsoft Azure Essentials: Fundamentals of Azure, introduces developers and IT professionals to the wide range of capabilities in Azure. The authors - both Microsoft MVPs in Azure - present both conceptual and how-to content for key areas, including: Azure Websites and Azure Cloud Services Azure Virtual Machines Azure Storage Azure Virtual Networks Databases Azure Active Directory Management tools Business scenarios Watch Microsoft Press’s blog and Twitter (@MicrosoftPress) to learn about other free ebooks in the “Microsoft Azure Essentials” series.
Publisher: Microsoft Press
ISBN: 0735697302
Category : Computers
Languages : en
Pages : 400
Book Description
Microsoft Azure Essentials from Microsoft Press is a series of free ebooks designed to help you advance your technical skills with Microsoft Azure. The first ebook in the series, Microsoft Azure Essentials: Fundamentals of Azure, introduces developers and IT professionals to the wide range of capabilities in Azure. The authors - both Microsoft MVPs in Azure - present both conceptual and how-to content for key areas, including: Azure Websites and Azure Cloud Services Azure Virtual Machines Azure Storage Azure Virtual Networks Databases Azure Active Directory Management tools Business scenarios Watch Microsoft Press’s blog and Twitter (@MicrosoftPress) to learn about other free ebooks in the “Microsoft Azure Essentials” series.
Getting Started with Bicep
Author: Freek Berson
Publisher: Independently Published
ISBN:
Category :
Languages : en
Pages : 196
Book Description
This book is your guide to mastering Bicep! It contains practical solutions and examples to help you jump start your journey towards Infrastructure as Code for Azure! Book Description Infrastructure as Code is crucial to becoming successful in the Azure Cloud. Azure Resource Manager allows you to create resources in Azure in a declarative way. For many years we have been using ARM Templates to declare resources in a JSON format. Although ARM Templates are very powerful, the implementation of the JSON language is hard to read, maintain and debug. Bicep, a Domain Specific Language, overcomes these issues by providing a transparent abstraction layer on top of ARM and ARM Templates. This significantly improves the authoring experience. Bicep is easy to understand at a glance and straightforward to learn regardless of your experience with other programming languages. The book starts with some history and background in Infrastructure as Code and ARM Templates. It continues by explaining Bicep and providing guidance on how to get started. After the introduction, you will start your journey by understanding the syntax of Bicep. You will start by learning the basics first and you will gradually dive deeper in the more advanced scenarios. The book also contains a dedicated chapter on a big real-world example which provides you with great insights on how to leverage Bicep for production usage. Part of this book is also the Bicep playground, visualizer and a PowerShell module for Bicep provided by the community. Sample code used in this book is available on a dedicated GitHub repository. What you will learn How to get started with the Bicep CLI and VSCode Extension Deploying Bicep files to Azure, including template specs Understanding the Bicep file structure How to use the basic concepts of variables, parameters, tags, decorators, expressions, and symbolic names Getting familiar with more advanced topics like dependencies, loops, conditions, target scopes, modules, and nesting Leveraging features like snippets, scaffolding, and linter that support you while authoring Bicep templates. Who this book is intended for DevOps engineers, developers, consultants, and Azure architects with or without experience in ARM Templates and infrastructure as code looking to get started with Bicep. Table of Contents 1 Why this book 2 What is project bicep 3 Getting started 4 Bicep file structure explained 5 Deploying bicep files to azure 6 Bicep syntax 7 Bicep playground and example code 8 Bicep visualizer 9 Template specs 10 Guest Chapter: Bicep PowerShell module 11 A real-world example 12 Alternatives to Bicep 13 Closing Notes 14 About the author
Publisher: Independently Published
ISBN:
Category :
Languages : en
Pages : 196
Book Description
This book is your guide to mastering Bicep! It contains practical solutions and examples to help you jump start your journey towards Infrastructure as Code for Azure! Book Description Infrastructure as Code is crucial to becoming successful in the Azure Cloud. Azure Resource Manager allows you to create resources in Azure in a declarative way. For many years we have been using ARM Templates to declare resources in a JSON format. Although ARM Templates are very powerful, the implementation of the JSON language is hard to read, maintain and debug. Bicep, a Domain Specific Language, overcomes these issues by providing a transparent abstraction layer on top of ARM and ARM Templates. This significantly improves the authoring experience. Bicep is easy to understand at a glance and straightforward to learn regardless of your experience with other programming languages. The book starts with some history and background in Infrastructure as Code and ARM Templates. It continues by explaining Bicep and providing guidance on how to get started. After the introduction, you will start your journey by understanding the syntax of Bicep. You will start by learning the basics first and you will gradually dive deeper in the more advanced scenarios. The book also contains a dedicated chapter on a big real-world example which provides you with great insights on how to leverage Bicep for production usage. Part of this book is also the Bicep playground, visualizer and a PowerShell module for Bicep provided by the community. Sample code used in this book is available on a dedicated GitHub repository. What you will learn How to get started with the Bicep CLI and VSCode Extension Deploying Bicep files to Azure, including template specs Understanding the Bicep file structure How to use the basic concepts of variables, parameters, tags, decorators, expressions, and symbolic names Getting familiar with more advanced topics like dependencies, loops, conditions, target scopes, modules, and nesting Leveraging features like snippets, scaffolding, and linter that support you while authoring Bicep templates. Who this book is intended for DevOps engineers, developers, consultants, and Azure architects with or without experience in ARM Templates and infrastructure as code looking to get started with Bicep. Table of Contents 1 Why this book 2 What is project bicep 3 Getting started 4 Bicep file structure explained 5 Deploying bicep files to azure 6 Bicep syntax 7 Bicep playground and example code 8 Bicep visualizer 9 Template specs 10 Guest Chapter: Bicep PowerShell module 11 A real-world example 12 Alternatives to Bicep 13 Closing Notes 14 About the author
Data Engineering on Azure
Author: Vlad Riscutia
Publisher: Simon and Schuster
ISBN: 1617298921
Category : Computers
Languages : en
Pages : 334
Book Description
Build a data platform to the industry-leading standards set by Microsoft’s own infrastructure. Summary In Data Engineering on Azure you will learn how to: Pick the right Azure services for different data scenarios Manage data inventory Implement production quality data modeling, analytics, and machine learning workloads Handle data governance Using DevOps to increase reliability Ingesting, storing, and distributing data Apply best practices for compliance and access control Data Engineering on Azure reveals the data management patterns and techniques that support Microsoft’s own massive data infrastructure. Author Vlad Riscutia, a data engineer at Microsoft, teaches you to bring an engineering rigor to your data platform and ensure that your data prototypes function just as well under the pressures of production. You'll implement common data modeling patterns, stand up cloud-native data platforms on Azure, and get to grips with DevOps for both analytics and machine learning. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Build secure, stable data platforms that can scale to loads of any size. When a project moves from the lab into production, you need confidence that it can stand up to real-world challenges. This book teaches you to design and implement cloud-based data infrastructure that you can easily monitor, scale, and modify. About the book In Data Engineering on Azure you’ll learn the skills you need to build and maintain big data platforms in massive enterprises. This invaluable guide includes clear, practical guidance for setting up infrastructure, orchestration, workloads, and governance. As you go, you’ll set up efficient machine learning pipelines, and then master time-saving automation and DevOps solutions. The Azure-based examples are easy to reproduce on other cloud platforms. What's inside Data inventory and data governance Assure data quality, compliance, and distribution Build automated pipelines to increase reliability Ingest, store, and distribute data Production-quality data modeling, analytics, and machine learning About the reader For data engineers familiar with cloud computing and DevOps. About the author Vlad Riscutia is a software architect at Microsoft. Table of Contents 1 Introduction PART 1 INFRASTRUCTURE 2 Storage 3 DevOps 4 Orchestration PART 2 WORKLOADS 5 Processing 6 Analytics 7 Machine learning PART 3 GOVERNANCE 8 Metadata 9 Data quality 10 Compliance 11 Distributing data
Publisher: Simon and Schuster
ISBN: 1617298921
Category : Computers
Languages : en
Pages : 334
Book Description
Build a data platform to the industry-leading standards set by Microsoft’s own infrastructure. Summary In Data Engineering on Azure you will learn how to: Pick the right Azure services for different data scenarios Manage data inventory Implement production quality data modeling, analytics, and machine learning workloads Handle data governance Using DevOps to increase reliability Ingesting, storing, and distributing data Apply best practices for compliance and access control Data Engineering on Azure reveals the data management patterns and techniques that support Microsoft’s own massive data infrastructure. Author Vlad Riscutia, a data engineer at Microsoft, teaches you to bring an engineering rigor to your data platform and ensure that your data prototypes function just as well under the pressures of production. You'll implement common data modeling patterns, stand up cloud-native data platforms on Azure, and get to grips with DevOps for both analytics and machine learning. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Build secure, stable data platforms that can scale to loads of any size. When a project moves from the lab into production, you need confidence that it can stand up to real-world challenges. This book teaches you to design and implement cloud-based data infrastructure that you can easily monitor, scale, and modify. About the book In Data Engineering on Azure you’ll learn the skills you need to build and maintain big data platforms in massive enterprises. This invaluable guide includes clear, practical guidance for setting up infrastructure, orchestration, workloads, and governance. As you go, you’ll set up efficient machine learning pipelines, and then master time-saving automation and DevOps solutions. The Azure-based examples are easy to reproduce on other cloud platforms. What's inside Data inventory and data governance Assure data quality, compliance, and distribution Build automated pipelines to increase reliability Ingest, store, and distribute data Production-quality data modeling, analytics, and machine learning About the reader For data engineers familiar with cloud computing and DevOps. About the author Vlad Riscutia is a software architect at Microsoft. Table of Contents 1 Introduction PART 1 INFRASTRUCTURE 2 Storage 3 DevOps 4 Orchestration PART 2 WORKLOADS 5 Processing 6 Analytics 7 Machine learning PART 3 GOVERNANCE 8 Metadata 9 Data quality 10 Compliance 11 Distributing data
Azure Machine Learning Engineering
Author: Sina Fakhraee
Publisher: Packt Publishing Ltd
ISBN: 1803241683
Category : Computers
Languages : en
Pages : 362
Book Description
Fully build and productionize end-to-end machine learning solutions using Azure Machine Learning Service Key FeaturesAutomate complete machine learning solutions using Microsoft AzureUnderstand how to productionize machine learning modelsGet to grips with monitoring, MLOps, deep learning, distributed training, and reinforcement learningBook Description Data scientists working on productionizing machine learning (ML) workloads face a breadth of challenges at every step owing to the countless factors involved in getting ML models deployed and running. This book offers solutions to common issues, detailed explanations of essential concepts, and step-by-step instructions to productionize ML workloads using the Azure Machine Learning service. You'll see how data scientists and ML engineers working with Microsoft Azure can train and deploy ML models at scale by putting their knowledge to work with this practical guide. Throughout the book, you'll learn how to train, register, and productionize ML models by making use of the power of the Azure Machine Learning service. You'll get to grips with scoring models in real time and batch, explaining models to earn business trust, mitigating model bias, and developing solutions using an MLOps framework. By the end of this Azure Machine Learning book, you'll be ready to build and deploy end-to-end ML solutions into a production system using the Azure Machine Learning service for real-time scenarios. What you will learnTrain ML models in the Azure Machine Learning serviceBuild end-to-end ML pipelinesHost ML models on real-time scoring endpointsMitigate bias in ML modelsGet the hang of using an MLOps framework to productionize modelsSimplify ML model explainability using the Azure Machine Learning service and Azure InterpretWho this book is for Machine learning engineers and data scientists who want to move to ML engineering roles will find this AMLS book useful. Familiarity with the Azure ecosystem will assist with understanding the concepts covered.
Publisher: Packt Publishing Ltd
ISBN: 1803241683
Category : Computers
Languages : en
Pages : 362
Book Description
Fully build and productionize end-to-end machine learning solutions using Azure Machine Learning Service Key FeaturesAutomate complete machine learning solutions using Microsoft AzureUnderstand how to productionize machine learning modelsGet to grips with monitoring, MLOps, deep learning, distributed training, and reinforcement learningBook Description Data scientists working on productionizing machine learning (ML) workloads face a breadth of challenges at every step owing to the countless factors involved in getting ML models deployed and running. This book offers solutions to common issues, detailed explanations of essential concepts, and step-by-step instructions to productionize ML workloads using the Azure Machine Learning service. You'll see how data scientists and ML engineers working with Microsoft Azure can train and deploy ML models at scale by putting their knowledge to work with this practical guide. Throughout the book, you'll learn how to train, register, and productionize ML models by making use of the power of the Azure Machine Learning service. You'll get to grips with scoring models in real time and batch, explaining models to earn business trust, mitigating model bias, and developing solutions using an MLOps framework. By the end of this Azure Machine Learning book, you'll be ready to build and deploy end-to-end ML solutions into a production system using the Azure Machine Learning service for real-time scenarios. What you will learnTrain ML models in the Azure Machine Learning serviceBuild end-to-end ML pipelinesHost ML models on real-time scoring endpointsMitigate bias in ML modelsGet the hang of using an MLOps framework to productionize modelsSimplify ML model explainability using the Azure Machine Learning service and Azure InterpretWho this book is for Machine learning engineers and data scientists who want to move to ML engineering roles will find this AMLS book useful. Familiarity with the Azure ecosystem will assist with understanding the concepts covered.
Microsoft Azure Security Center
Author: Yuri Diogenes
Publisher: Microsoft Press
ISBN: 1509307060
Category : Computers
Languages : en
Pages : 298
Book Description
Discover high-value Azure security insights, tips, and operational optimizations This book presents comprehensive Azure Security Center techniques for safeguarding cloud and hybrid environments. Leading Microsoft security and cloud experts Yuri Diogenes and Dr. Thomas Shinder show how to apply Azure Security Center’s full spectrum of features and capabilities to address protection, detection, and response in key operational scenarios. You’ll learn how to secure any Azure workload, and optimize virtually all facets of modern security, from policies and identity to incident response and risk management. Whatever your role in Azure security, you’ll learn how to save hours, days, or even weeks by solving problems in most efficient, reliable ways possible. Two of Microsoft’s leading cloud security experts show how to: • Assess the impact of cloud and hybrid environments on security, compliance, operations, data protection, and risk management • Master a new security paradigm for a world without traditional perimeters • Gain visibility and control to secure compute, network, storage, and application workloads • Incorporate Azure Security Center into your security operations center • Integrate Azure Security Center with Azure AD Identity Protection Center and third-party solutions • Adapt Azure Security Center’s built-in policies and definitions for your organization • Perform security assessments and implement Azure Security Center recommendations • Use incident response features to detect, investigate, and address threats • Create high-fidelity fusion alerts to focus attention on your most urgent security issues • Implement application whitelisting and just-in-time VM access • Monitor user behavior and access, and investigate compromised or misused credentials • Customize and perform operating system security baseline assessments • Leverage integrated threat intelligence to identify known bad actors
Publisher: Microsoft Press
ISBN: 1509307060
Category : Computers
Languages : en
Pages : 298
Book Description
Discover high-value Azure security insights, tips, and operational optimizations This book presents comprehensive Azure Security Center techniques for safeguarding cloud and hybrid environments. Leading Microsoft security and cloud experts Yuri Diogenes and Dr. Thomas Shinder show how to apply Azure Security Center’s full spectrum of features and capabilities to address protection, detection, and response in key operational scenarios. You’ll learn how to secure any Azure workload, and optimize virtually all facets of modern security, from policies and identity to incident response and risk management. Whatever your role in Azure security, you’ll learn how to save hours, days, or even weeks by solving problems in most efficient, reliable ways possible. Two of Microsoft’s leading cloud security experts show how to: • Assess the impact of cloud and hybrid environments on security, compliance, operations, data protection, and risk management • Master a new security paradigm for a world without traditional perimeters • Gain visibility and control to secure compute, network, storage, and application workloads • Incorporate Azure Security Center into your security operations center • Integrate Azure Security Center with Azure AD Identity Protection Center and third-party solutions • Adapt Azure Security Center’s built-in policies and definitions for your organization • Perform security assessments and implement Azure Security Center recommendations • Use incident response features to detect, investigate, and address threats • Create high-fidelity fusion alerts to focus attention on your most urgent security issues • Implement application whitelisting and just-in-time VM access • Monitor user behavior and access, and investigate compromised or misused credentials • Customize and perform operating system security baseline assessments • Leverage integrated threat intelligence to identify known bad actors
Learning Microsoft Azure
Author: Jonah Carrio Andersson
Publisher: "O'Reilly Media, Inc."
ISBN: 1098113292
Category : Computers
Languages : en
Pages : 478
Book Description
If your organization plans to modernize services and move to the cloud from legacy software or a private cloud on premises, this book is for you. Software developers, solution architects, cloud engineers, and anybody interested in cloud technologies will learn fundamental concepts for cloud computing, migration, transformation, and development using Microsoft Azure. Author and Microsoft MVP Jonah Carrio Andersson guides you through cloud computing concepts and deployment models, the wide range of modern cloud technologies, application development with Azure, team collaboration services, security services, and cloud migration options in Microsoft Azure. You'll gain insight into the Microsoft Azure cloud services that you can apply in different business use cases, software development projects, and modern solutions in the cloud. You'll also become fluent with Azure cloud migration services, serverless computing technologies that help your development team work productively, Azure IoT, and Azure cognitive services that make your application smarter. This book also provides real-world advice and best practices based on the author's own Azure migration experience. Gain insight into which Azure cloud service best suits your company's particular needs Understand how to use Azure for different use cases and specific technical requirements Start developing cloud services, applications, and solutions in the Azure environment Learn how to migrate existing legacy applications to Microsoft Azure
Publisher: "O'Reilly Media, Inc."
ISBN: 1098113292
Category : Computers
Languages : en
Pages : 478
Book Description
If your organization plans to modernize services and move to the cloud from legacy software or a private cloud on premises, this book is for you. Software developers, solution architects, cloud engineers, and anybody interested in cloud technologies will learn fundamental concepts for cloud computing, migration, transformation, and development using Microsoft Azure. Author and Microsoft MVP Jonah Carrio Andersson guides you through cloud computing concepts and deployment models, the wide range of modern cloud technologies, application development with Azure, team collaboration services, security services, and cloud migration options in Microsoft Azure. You'll gain insight into the Microsoft Azure cloud services that you can apply in different business use cases, software development projects, and modern solutions in the cloud. You'll also become fluent with Azure cloud migration services, serverless computing technologies that help your development team work productively, Azure IoT, and Azure cognitive services that make your application smarter. This book also provides real-world advice and best practices based on the author's own Azure migration experience. Gain insight into which Azure cloud service best suits your company's particular needs Understand how to use Azure for different use cases and specific technical requirements Start developing cloud services, applications, and solutions in the Azure environment Learn how to migrate existing legacy applications to Microsoft Azure
Mastering Azure Machine Learning
Author: Christoph Korner
Publisher: Packt Publishing Ltd
ISBN: 1803246790
Category : Computers
Languages : en
Pages : 624
Book Description
Supercharge and automate your deployments to Azure Machine Learning clusters and Azure Kubernetes Service using Azure Machine Learning services Key Features Implement end-to-end machine learning pipelines on Azure Train deep learning models using Azure compute infrastructure Deploy machine learning models using MLOps Book Description Azure Machine Learning is a cloud service for accelerating and managing the machine learning (ML) project life cycle that ML professionals, data scientists, and engineers can use in their day-to-day workflows. This book covers the end-to-end ML process using Microsoft Azure Machine Learning, including data preparation, performing and logging ML training runs, designing training and deployment pipelines, and managing these pipelines via MLOps. The first section shows you how to set up an Azure Machine Learning workspace; ingest and version datasets; as well as preprocess, label, and enrich these datasets for training. In the next two sections, you'll discover how to enrich and train ML models for embedding, classification, and regression. You'll explore advanced NLP techniques, traditional ML models such as boosted trees, modern deep neural networks, recommendation systems, reinforcement learning, and complex distributed ML training techniques - all using Azure Machine Learning. The last section will teach you how to deploy the trained models as a batch pipeline or real-time scoring service using Docker, Azure Machine Learning clusters, Azure Kubernetes Services, and alternative deployment targets. By the end of this book, you'll be able to combine all the steps you've learned by building an MLOps pipeline. What you will learn Understand the end-to-end ML pipeline Get to grips with the Azure Machine Learning workspace Ingest, analyze, and preprocess datasets for ML using the Azure cloud Train traditional and modern ML techniques efficiently using Azure ML Deploy ML models for batch and real-time scoring Understand model interoperability with ONNX Deploy ML models to FPGAs and Azure IoT Edge Build an automated MLOps pipeline using Azure DevOps Who this book is for This book is for machine learning engineers, data scientists, and machine learning developers who want to use the Microsoft Azure cloud to manage their datasets and machine learning experiments and build an enterprise-grade ML architecture using MLOps. This book will also help anyone interested in machine learning to explore important steps of the ML process and use Azure Machine Learning to support them, along with building powerful ML cloud applications. A basic understanding of Python and knowledge of machine learning are recommended.
Publisher: Packt Publishing Ltd
ISBN: 1803246790
Category : Computers
Languages : en
Pages : 624
Book Description
Supercharge and automate your deployments to Azure Machine Learning clusters and Azure Kubernetes Service using Azure Machine Learning services Key Features Implement end-to-end machine learning pipelines on Azure Train deep learning models using Azure compute infrastructure Deploy machine learning models using MLOps Book Description Azure Machine Learning is a cloud service for accelerating and managing the machine learning (ML) project life cycle that ML professionals, data scientists, and engineers can use in their day-to-day workflows. This book covers the end-to-end ML process using Microsoft Azure Machine Learning, including data preparation, performing and logging ML training runs, designing training and deployment pipelines, and managing these pipelines via MLOps. The first section shows you how to set up an Azure Machine Learning workspace; ingest and version datasets; as well as preprocess, label, and enrich these datasets for training. In the next two sections, you'll discover how to enrich and train ML models for embedding, classification, and regression. You'll explore advanced NLP techniques, traditional ML models such as boosted trees, modern deep neural networks, recommendation systems, reinforcement learning, and complex distributed ML training techniques - all using Azure Machine Learning. The last section will teach you how to deploy the trained models as a batch pipeline or real-time scoring service using Docker, Azure Machine Learning clusters, Azure Kubernetes Services, and alternative deployment targets. By the end of this book, you'll be able to combine all the steps you've learned by building an MLOps pipeline. What you will learn Understand the end-to-end ML pipeline Get to grips with the Azure Machine Learning workspace Ingest, analyze, and preprocess datasets for ML using the Azure cloud Train traditional and modern ML techniques efficiently using Azure ML Deploy ML models for batch and real-time scoring Understand model interoperability with ONNX Deploy ML models to FPGAs and Azure IoT Edge Build an automated MLOps pipeline using Azure DevOps Who this book is for This book is for machine learning engineers, data scientists, and machine learning developers who want to use the Microsoft Azure cloud to manage their datasets and machine learning experiments and build an enterprise-grade ML architecture using MLOps. This book will also help anyone interested in machine learning to explore important steps of the ML process and use Azure Machine Learning to support them, along with building powerful ML cloud applications. A basic understanding of Python and knowledge of machine learning are recommended.
Machine Learning Security with Azure
Author: Georgia Kalyva
Publisher: Packt Publishing Ltd
ISBN: 1805123955
Category : Computers
Languages : en
Pages : 310
Book Description
Implement industry best practices to identify vulnerabilities and protect your data, models, environment, and applications while learning how to recover from a security breach Key Features Learn about machine learning attacks and assess your workloads for vulnerabilities Gain insights into securing data, infrastructure, and workloads effectively Discover how to set and maintain a better security posture with the Azure Machine Learning platform Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionWith AI and machine learning (ML) models gaining popularity and integrating into more and more applications, it is more important than ever to ensure that models perform accurately and are not vulnerable to cyberattacks. However, attacks can target your data or environment as well. This book will help you identify security risks and apply the best practices to protect your assets on multiple levels, from data and models to applications and infrastructure. This book begins by introducing what some common ML attacks are, how to identify your risks, and the industry standards and responsible AI principles you need to follow to gain an understanding of what you need to protect. Next, you will learn about the best practices to secure your assets. Starting with data protection and governance and then moving on to protect your infrastructure, you will gain insights into managing and securing your Azure ML workspace. This book introduces DevOps practices to automate your tasks securely and explains how to recover from ML attacks. Finally, you will learn how to set a security benchmark for your scenario and best practices to maintain and monitor your security posture. By the end of this book, you’ll be able to implement best practices to assess and secure your ML assets throughout the Azure Machine Learning life cycle.What you will learn Explore the Azure Machine Learning project life cycle and services Assess the vulnerability of your ML assets using the Zero Trust model Explore essential controls to ensure data governance and compliance in Azure Understand different methods to secure your data, models, and infrastructure against attacks Find out how to detect and remediate past or ongoing attacks Explore methods to recover from a security breach Monitor and maintain your security posture with the right tools and best practices Who this book is for This book is for anyone looking to learn how to assess, secure, and monitor every aspect of AI or machine learning projects running on the Microsoft Azure platform using the latest security and compliance, industry best practices, and standards. This is a must-have resource for machine learning developers and data scientists working on ML projects. IT administrators, DevOps, and security engineers required to secure and monitor Azure workloads will also benefit from this book, as the chapters cover everything from implementation to deployment, AI attack prevention, and recovery.
Publisher: Packt Publishing Ltd
ISBN: 1805123955
Category : Computers
Languages : en
Pages : 310
Book Description
Implement industry best practices to identify vulnerabilities and protect your data, models, environment, and applications while learning how to recover from a security breach Key Features Learn about machine learning attacks and assess your workloads for vulnerabilities Gain insights into securing data, infrastructure, and workloads effectively Discover how to set and maintain a better security posture with the Azure Machine Learning platform Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionWith AI and machine learning (ML) models gaining popularity and integrating into more and more applications, it is more important than ever to ensure that models perform accurately and are not vulnerable to cyberattacks. However, attacks can target your data or environment as well. This book will help you identify security risks and apply the best practices to protect your assets on multiple levels, from data and models to applications and infrastructure. This book begins by introducing what some common ML attacks are, how to identify your risks, and the industry standards and responsible AI principles you need to follow to gain an understanding of what you need to protect. Next, you will learn about the best practices to secure your assets. Starting with data protection and governance and then moving on to protect your infrastructure, you will gain insights into managing and securing your Azure ML workspace. This book introduces DevOps practices to automate your tasks securely and explains how to recover from ML attacks. Finally, you will learn how to set a security benchmark for your scenario and best practices to maintain and monitor your security posture. By the end of this book, you’ll be able to implement best practices to assess and secure your ML assets throughout the Azure Machine Learning life cycle.What you will learn Explore the Azure Machine Learning project life cycle and services Assess the vulnerability of your ML assets using the Zero Trust model Explore essential controls to ensure data governance and compliance in Azure Understand different methods to secure your data, models, and infrastructure against attacks Find out how to detect and remediate past or ongoing attacks Explore methods to recover from a security breach Monitor and maintain your security posture with the right tools and best practices Who this book is for This book is for anyone looking to learn how to assess, secure, and monitor every aspect of AI or machine learning projects running on the Microsoft Azure platform using the latest security and compliance, industry best practices, and standards. This is a must-have resource for machine learning developers and data scientists working on ML projects. IT administrators, DevOps, and security engineers required to secure and monitor Azure workloads will also benefit from this book, as the chapters cover everything from implementation to deployment, AI attack prevention, and recovery.
Cloud Data Science: Harnessing Azure Machine Learning with Python
Author: Peter Jones
Publisher: Walzone Press
ISBN:
Category : Computers
Languages : en
Pages : 174
Book Description
Unlock the full potential of your data with "Cloud Data Science: Harnessing Azure Machine Learning with Python." This comprehensive guide equips you with the knowledge and skills to leverage the power of Azure Machine Learning and the versatility of Python to innovate and streamline your machine learning workflows. From setting up your Azure Machine Learning workspace to deploying sophisticated models, this book covers essential techniques and advanced methodologies in a clear, practical format. Dive into core topics such as data management, automated machine learning workflows, model optimization, and real-time monitoring to ensure your projects are scalable, efficient, and effective. Whether you're a data scientist, machine learning engineer, or a professional seeking to enhance your understanding of cloud-based machine learning, this book offers invaluable insights and hands-on examples to help you transform vast amounts of data into actionable insights. Explore real-world case studies across various industries, learn to overcome common challenges, and discover best practices for implementing machine learning projects successfully. "Cloud Data Science: Harnessing Azure Machine Learning with Python" is your gateway to mastering data science in the cloud and advancing your professional capabilities in the future of technology.
Publisher: Walzone Press
ISBN:
Category : Computers
Languages : en
Pages : 174
Book Description
Unlock the full potential of your data with "Cloud Data Science: Harnessing Azure Machine Learning with Python." This comprehensive guide equips you with the knowledge and skills to leverage the power of Azure Machine Learning and the versatility of Python to innovate and streamline your machine learning workflows. From setting up your Azure Machine Learning workspace to deploying sophisticated models, this book covers essential techniques and advanced methodologies in a clear, practical format. Dive into core topics such as data management, automated machine learning workflows, model optimization, and real-time monitoring to ensure your projects are scalable, efficient, and effective. Whether you're a data scientist, machine learning engineer, or a professional seeking to enhance your understanding of cloud-based machine learning, this book offers invaluable insights and hands-on examples to help you transform vast amounts of data into actionable insights. Explore real-world case studies across various industries, learn to overcome common challenges, and discover best practices for implementing machine learning projects successfully. "Cloud Data Science: Harnessing Azure Machine Learning with Python" is your gateway to mastering data science in the cloud and advancing your professional capabilities in the future of technology.