Automating the Design of Data Mining Algorithms

Automating the Design of Data Mining Algorithms PDF Author: Gisele L. Pappa
Publisher: Springer Science & Business Media
ISBN: 3642025412
Category : Computers
Languages : en
Pages : 198

Get Book Here

Book Description
Data mining is a very active research area with many successful real-world app- cations. It consists of a set of concepts and methods used to extract interesting or useful knowledge (or patterns) from real-world datasets, providing valuable support for decision making in industry, business, government, and science. Although there are already many types of data mining algorithms available in the literature, it is still dif cult for users to choose the best possible data mining algorithm for their particular data mining problem. In addition, data mining al- rithms have been manually designed; therefore they incorporate human biases and preferences. This book proposes a new approach to the design of data mining algorithms. - stead of relying on the slow and ad hoc process of manual algorithm design, this book proposes systematically automating the design of data mining algorithms with an evolutionary computation approach. More precisely, we propose a genetic p- gramming system (a type of evolutionary computation method that evolves c- puter programs) to automate the design of rule induction algorithms, a type of cl- si cation method that discovers a set of classi cation rules from data. We focus on genetic programming in this book because it is the paradigmatic type of machine learning method for automating the generation of programs and because it has the advantage of performing a global search in the space of candidate solutions (data mining algorithms in our case), but in principle other types of search methods for this task could be investigated in the future.

Automating the Design of Data Mining Algorithms

Automating the Design of Data Mining Algorithms PDF Author: Gisele L. Pappa
Publisher: Springer Science & Business Media
ISBN: 3642025412
Category : Computers
Languages : en
Pages : 198

Get Book Here

Book Description
Data mining is a very active research area with many successful real-world app- cations. It consists of a set of concepts and methods used to extract interesting or useful knowledge (or patterns) from real-world datasets, providing valuable support for decision making in industry, business, government, and science. Although there are already many types of data mining algorithms available in the literature, it is still dif cult for users to choose the best possible data mining algorithm for their particular data mining problem. In addition, data mining al- rithms have been manually designed; therefore they incorporate human biases and preferences. This book proposes a new approach to the design of data mining algorithms. - stead of relying on the slow and ad hoc process of manual algorithm design, this book proposes systematically automating the design of data mining algorithms with an evolutionary computation approach. More precisely, we propose a genetic p- gramming system (a type of evolutionary computation method that evolves c- puter programs) to automate the design of rule induction algorithms, a type of cl- si cation method that discovers a set of classi cation rules from data. We focus on genetic programming in this book because it is the paradigmatic type of machine learning method for automating the generation of programs and because it has the advantage of performing a global search in the space of candidate solutions (data mining algorithms in our case), but in principle other types of search methods for this task could be investigated in the future.

Automating the Design of Data Mining Algorithms

Automating the Design of Data Mining Algorithms PDF Author: Gisele L. Pappa
Publisher: Springer
ISBN: 9783642261251
Category : Computers
Languages : en
Pages : 0

Get Book Here

Book Description
Data mining is a very active research area with many successful real-world app- cations. It consists of a set of concepts and methods used to extract interesting or useful knowledge (or patterns) from real-world datasets, providing valuable support for decision making in industry, business, government, and science. Although there are already many types of data mining algorithms available in the literature, it is still dif cult for users to choose the best possible data mining algorithm for their particular data mining problem. In addition, data mining al- rithms have been manually designed; therefore they incorporate human biases and preferences. This book proposes a new approach to the design of data mining algorithms. - stead of relying on the slow and ad hoc process of manual algorithm design, this book proposes systematically automating the design of data mining algorithms with an evolutionary computation approach. More precisely, we propose a genetic p- gramming system (a type of evolutionary computation method that evolves c- puter programs) to automate the design of rule induction algorithms, a type of cl- si cation method that discovers a set of classi cation rules from data. We focus on genetic programming in this book because it is the paradigmatic type of machine learning method for automating the generation of programs and because it has the advantage of performing a global search in the space of candidate solutions (data mining algorithms in our case), but in principle other types of search methods for this task could be investigated in the future.

Automating the News

Automating the News PDF Author: Nicholas Diakopoulos
Publisher: Harvard University Press
ISBN: 0674239318
Category : Language Arts & Disciplines
Languages : en
Pages : 337

Get Book Here

Book Description
From hidden connections in big data to bots spreading fake news, journalism is increasingly computer-generated. An expert in computer science and media explains the present and future of a world in which news is created by algorithm. Amid the push for self-driving cars and the roboticization of industrial economies, automation has proven one of the biggest news stories of our time. Yet the wide-scale automation of the news itself has largely escaped attention. In this lively exposé of that rapidly shifting terrain, Nicholas Diakopoulos focuses on the people who tell the stories—increasingly with the help of computer algorithms that are fundamentally changing the creation, dissemination, and reception of the news. Diakopoulos reveals how machine learning and data mining have transformed investigative journalism. Newsbots converse with social media audiences, distributing stories and receiving feedback. Online media has become a platform for A/B testing of content, helping journalists to better understand what moves audiences. Algorithms can even draft certain kinds of stories. These techniques enable media organizations to take advantage of experiments and economies of scale, enhancing the sustainability of the fourth estate. But they also place pressure on editorial decision-making, because they allow journalists to produce more stories, sometimes better ones, but rarely both. Automating the News responds to hype and fears surrounding journalistic algorithms by exploring the human influence embedded in automation. Though the effects of automation are deep, Diakopoulos shows that journalists are at little risk of being displaced. With algorithms at their fingertips, they may work differently and tell different stories than they otherwise would, but their values remain the driving force behind the news. The human–algorithm hybrid thus emerges as the latest embodiment of an age-old tension between commercial imperatives and journalistic principles.

Automating the Analysis of Spatial Grids

Automating the Analysis of Spatial Grids PDF Author: Valliappa Lakshmanan
Publisher: Springer Science & Business Media
ISBN: 9400740751
Category : Science
Languages : en
Pages : 328

Get Book Here

Book Description
The ability to create automated algorithms to process gridded spatial data is increasingly important as remotely sensed datasets increase in volume and frequency. Whether in business, social science, ecology, meteorology or urban planning, the ability to create automated applications to analyze and detect patterns in geospatial data is increasingly important. This book provides students with a foundation in topics of digital image processing and data mining as applied to geospatial datasets. The aim is for readers to be able to devise and implement automated techniques to extract information from spatial grids such as radar, satellite or high-resolution survey imagery.

Data Mining and Machine Learning

Data Mining and Machine Learning PDF Author: Mohammed J. Zaki
Publisher: Cambridge University Press
ISBN: 1108473989
Category : Business & Economics
Languages : en
Pages : 779

Get Book Here

Book Description
New to the second edition of this advanced text are several chapters on regression, including neural networks and deep learning.

Bioinformatics Applications Based On Machine Learning

Bioinformatics Applications Based On Machine Learning PDF Author: Pablo Chamoso
Publisher: MDPI
ISBN: 3036507604
Category : Technology & Engineering
Languages : en
Pages : 206

Get Book Here

Book Description
The great advances in information technology (IT) have implications for many sectors, such as bioinformatics, and has considerably increased their possibilities. This book presents a collection of 11 original research papers, all of them related to the application of IT-related techniques within the bioinformatics sector: from new applications created from the adaptation and application of existing techniques to the creation of new methodologies to solve existing problems.

Metalearning

Metalearning PDF Author: Pavel Brazdil
Publisher: Springer Science & Business Media
ISBN: 3540732624
Category : Computers
Languages : en
Pages : 182

Get Book Here

Book Description
Metalearning is the study of principled methods that exploit metaknowledge to obtain efficient models and solutions by adapting machine learning and data mining processes. While the variety of machine learning and data mining techniques now available can, in principle, provide good model solutions, a methodology is still needed to guide the search for the most appropriate model in an efficient way. Metalearning provides one such methodology that allows systems to become more effective through experience. This book discusses several approaches to obtaining knowledge concerning the performance of machine learning and data mining algorithms. It shows how this knowledge can be reused to select, combine, compose and adapt both algorithms and models to yield faster, more effective solutions to data mining problems. It can thus help developers improve their algorithms and also develop learning systems that can improve themselves. The book will be of interest to researchers and graduate students in the areas of machine learning, data mining and artificial intelligence.

Proceedings of the 2012 International Conference on Communication, Electronics and Automation Engineering

Proceedings of the 2012 International Conference on Communication, Electronics and Automation Engineering PDF Author: George Yang
Publisher: Springer Science & Business Media
ISBN: 3642316980
Category : Technology & Engineering
Languages : en
Pages : 1228

Get Book Here

Book Description
This book is a collection of selected papers from the 2011 International Conference on Communications, Electronics and Automation Engineering hold in Xi’an, China, August 23-25, 2012. It presents some of the latest research findings in a broad range of interdisciplinary fields related to communications, electronics and automation engineering. Specific emphasis is placed on the following topics: automation control, data mining and statistics, simulation and mathematical modeling, human factors and cognitive engineering, web technology, optimization and algorithm, and network communications. The prime objective of the book is to familiarize the readers with cutting edge developments in the research of electronics and automation engineering with a variety of applications. Hopefully, the book can help researchers to identify research trends in many areas, to learn the new methods and tools, and to spark innovative ideas.

Intelligent Data Engineering and Automated Learning -- IDEAL 2011

Intelligent Data Engineering and Automated Learning -- IDEAL 2011 PDF Author: Hujun Yin
Publisher: Springer
ISBN: 3642238785
Category : Computers
Languages : en
Pages : 527

Get Book Here

Book Description
This book constitutes the refereed proceedings of the 12th International Conference on Intelligent Data Engineering and Automated Learning, IDEAL 2011, held in Norwich, UK, in September 2011. The 59 revised full papers presented were carefully reviewed and selected from numerous submissions for inclusion in the book and present the latest theoretical advances and real-world applications in computational intelligence.

Intelligent Data Engineering and Automated Learning

Intelligent Data Engineering and Automated Learning PDF Author: Jiming Liu
Publisher: Springer
ISBN: 3540450807
Category : Computers
Languages : en
Pages : 1161

Get Book Here

Book Description
This book constitutes the throughly refereed post-proceedings of the 4th International Conference on Intelligent Data Engineering and Automated Learning, IDEAL 2003, held in Hong Kong, China in March 2003. The 164 revised papers presented were carefully reviewed and selected from 321 submissions; for inclusion in this post-proceedings another round of revision was imposed. The papers are organized in topical sections an agents, automated learning, bioinformatics, data mining, multimedia information, and financial engineering.