Author:
Publisher:
ISBN:
Category : Cloud forecasting
Languages : en
Pages : 16
Book Description
Automated Whole Sky Imagers for Day and Night Cloud Field Assessment
Solar Energy Forecasting and Resource Assessment
Author: Jan Kleissl
Publisher: Academic Press
ISBN: 012397772X
Category : Technology & Engineering
Languages : en
Pages : 503
Book Description
Solar Energy Forecasting and Resource Assessment is a vital text for solar energy professionals, addressing a critical gap in the core literature of the field. As major barriers to solar energy implementation, such as materials cost and low conversion efficiency, continue to fall, issues of intermittency and reliability have come to the fore. Scrutiny from solar project developers and their financiers on the accuracy of long-term resource projections and grid operators' concerns about variable short-term power generation have made the field of solar forecasting and resource assessment pivotally important. This volume provides an authoritative voice on the topic, incorporating contributions from an internationally recognized group of top authors from both industry and academia, focused on providing information from underlying scientific fundamentals to practical applications and emphasizing the latest technological developments driving this discipline forward. - The only reference dedicated to forecasting and assessing solar resources enables a complete understanding of the state of the art from the world's most renowned experts. - Demonstrates how to derive reliable data on solar resource availability and variability at specific locations to support accurate prediction of solar plant performance and attendant financial analysis. - Provides cutting-edge information on recent advances in solar forecasting through monitoring, satellite and ground remote sensing, and numerical weather prediction.
Publisher: Academic Press
ISBN: 012397772X
Category : Technology & Engineering
Languages : en
Pages : 503
Book Description
Solar Energy Forecasting and Resource Assessment is a vital text for solar energy professionals, addressing a critical gap in the core literature of the field. As major barriers to solar energy implementation, such as materials cost and low conversion efficiency, continue to fall, issues of intermittency and reliability have come to the fore. Scrutiny from solar project developers and their financiers on the accuracy of long-term resource projections and grid operators' concerns about variable short-term power generation have made the field of solar forecasting and resource assessment pivotally important. This volume provides an authoritative voice on the topic, incorporating contributions from an internationally recognized group of top authors from both industry and academia, focused on providing information from underlying scientific fundamentals to practical applications and emphasizing the latest technological developments driving this discipline forward. - The only reference dedicated to forecasting and assessing solar resources enables a complete understanding of the state of the art from the world's most renowned experts. - Demonstrates how to derive reliable data on solar resource availability and variability at specific locations to support accurate prediction of solar plant performance and attendant financial analysis. - Provides cutting-edge information on recent advances in solar forecasting through monitoring, satellite and ground remote sensing, and numerical weather prediction.
Whole Sky Imaging of Clouds in the Visible and IR for Starfire Optical Range
Author: Janet E. Shields
Publisher:
ISBN:
Category : Clouds
Languages : en
Pages : 68
Book Description
This report describes the work done for the Starfire Optical Range, Kirtland Air Force Base under Contract N00014-01-D-043 DO #11, between 02 September 2004 and 30 April 2006. This work relates to the Air Force's need to characterize the cloud distribution during day and night, for a variety of applications, including support of research into impact of clouds on laser communication and support of satellite tracking. This contract followed Contract N00014-01-D-0043 DO #4, which will be discussed in Section 2, and is documented in Shields et al 2007, Technical Note 271. Under this contract, we began preparing Whole Sky Imager systems for field experiments in support of program goals, adapting the software and refurbishing the hardware. Significant progress was made both in the related cloud algorithms and in methods to assess their accuracy. A related contract was funded through Boeing during 31 January 2005 - 30 November 2005. The tasks completed under that contract are closely related to these tasks, and will also be reported here. In particular, early portions of the night algorithm work reported in Section 7, and early portions of the hardware and software refurbishment were completed partly under the ONR contract and partly under the Boeing contract. The work under this Boeing contract was finished in May 2005. A follow-on contract, ONR N00014-0l-D-0043 DO #13 was funded on 20 April 2006. The work under DO #13 will be reported under a separate report upon completion of the contract.
Publisher:
ISBN:
Category : Clouds
Languages : en
Pages : 68
Book Description
This report describes the work done for the Starfire Optical Range, Kirtland Air Force Base under Contract N00014-01-D-043 DO #11, between 02 September 2004 and 30 April 2006. This work relates to the Air Force's need to characterize the cloud distribution during day and night, for a variety of applications, including support of research into impact of clouds on laser communication and support of satellite tracking. This contract followed Contract N00014-01-D-0043 DO #4, which will be discussed in Section 2, and is documented in Shields et al 2007, Technical Note 271. Under this contract, we began preparing Whole Sky Imager systems for field experiments in support of program goals, adapting the software and refurbishing the hardware. Significant progress was made both in the related cloud algorithms and in methods to assess their accuracy. A related contract was funded through Boeing during 31 January 2005 - 30 November 2005. The tasks completed under that contract are closely related to these tasks, and will also be reported here. In particular, early portions of the night algorithm work reported in Section 7, and early portions of the hardware and software refurbishment were completed partly under the ONR contract and partly under the Boeing contract. The work under this Boeing contract was finished in May 2005. A follow-on contract, ONR N00014-0l-D-0043 DO #13 was funded on 20 April 2006. The work under DO #13 will be reported under a separate report upon completion of the contract.
Daylight Visible/NIR Whole Sky Imagers for Cloud and Radiance Monitoring in Support of UV Research Programs
Author: Janet E. Shields
Publisher:
ISBN:
Category : Imaging systems in meteorology
Languages : en
Pages : 16
Book Description
Publisher:
ISBN:
Category : Imaging systems in meteorology
Languages : en
Pages : 16
Book Description
Project Report for Providing Two Day/night Whole Sky Imagers and Related Development Work for Starfire Optical Range
Author: Janet E. Shields
Publisher:
ISBN:
Category : Imaging systems in meteorology
Languages : en
Pages : 58
Book Description
Publisher:
ISBN:
Category : Imaging systems in meteorology
Languages : en
Pages : 58
Book Description
Whole Sky Imagers for Real-time Cloud Assessment, Cloud-free Line of Sight Determinations and Potential Tactical Applications
Author: Janet E. Shields
Publisher:
ISBN:
Category : Imaging systems in meteorology
Languages : en
Pages : 16
Book Description
Publisher:
ISBN:
Category : Imaging systems in meteorology
Languages : en
Pages : 16
Book Description
Development of Extinction Imagers for the Determination of Atmospheric Optical Extinction
Author: Atmospheric Optics Group
Publisher:
ISBN:
Category : Light absorption
Languages : en
Pages : 154
Book Description
The primary goals of this project for JTO and ONR (Grant N00014-07-1-1060) were to further develop Extinction Imagers for use in the ocean environment, and to extend the capabilities into the Short Wave IR (SWIR). Extinction Imaging is a method for determining the effective extinction coefficient over an extended path using a sensor at one end of the path. It uses calibrated imagers to acquire the relative radiance of a dark target near the other the end of the path and the horizon sky in the direction of the dark target. It is completely passive and thus covert, and the hardware is robust and relatively inexpensive. It uses rigorous equations, which determine the extinction coefficient from the measured apparent contrast of the radiance of the dark target with respect to the horizon sky. The project was very successful. We found that the ocean surface could readily be used as a dark target in red and SWIR wavelengths. Both the red and the SWIR measurement results were excellent for daytime. Comparisons with standard instruments, as well as uncertainty analysis, indicated that extinction imagers provide better measurements of the atmospheric extinction losses over extended paths than other methods of which we are aware. Our secondary goals were to address the night regime, and to address slanted paths above the horizontal. Regarding night, we found that the visible sensor acquired excellent data, but the ocean surface was not a good dark target in our wavelengths. Recommendations on the handling of night are given in the report. Regarding the lines of sight above the horizon, we developed a slant path algorithm that determines beam transmittance. It performed very well. Recommendations are made regarding integration of these techniques for military applications
Publisher:
ISBN:
Category : Light absorption
Languages : en
Pages : 154
Book Description
The primary goals of this project for JTO and ONR (Grant N00014-07-1-1060) were to further develop Extinction Imagers for use in the ocean environment, and to extend the capabilities into the Short Wave IR (SWIR). Extinction Imaging is a method for determining the effective extinction coefficient over an extended path using a sensor at one end of the path. It uses calibrated imagers to acquire the relative radiance of a dark target near the other the end of the path and the horizon sky in the direction of the dark target. It is completely passive and thus covert, and the hardware is robust and relatively inexpensive. It uses rigorous equations, which determine the extinction coefficient from the measured apparent contrast of the radiance of the dark target with respect to the horizon sky. The project was very successful. We found that the ocean surface could readily be used as a dark target in red and SWIR wavelengths. Both the red and the SWIR measurement results were excellent for daytime. Comparisons with standard instruments, as well as uncertainty analysis, indicated that extinction imagers provide better measurements of the atmospheric extinction losses over extended paths than other methods of which we are aware. Our secondary goals were to address the night regime, and to address slanted paths above the horizontal. Regarding night, we found that the visible sensor acquired excellent data, but the ocean surface was not a good dark target in our wavelengths. Recommendations on the handling of night are given in the report. Regarding the lines of sight above the horizon, we developed a slant path algorithm that determines beam transmittance. It performed very well. Recommendations are made regarding integration of these techniques for military applications
Advances in Meteorology, Climatology and Atmospheric Physics
Author: Costas G. Helmis
Publisher: Springer Science & Business Media
ISBN: 3642291724
Category : Science
Languages : en
Pages : 1223
Book Description
This book essentially comprises the proceedings of the 11th International Conference of Meteorology, Climatology and Atmospheric Physics (COMECAP 2012) that is held in Athens from 30 May to 1 June 2012. The Conference addresses researchers, professionals and students interested in the following topics: Agricultural Meteorology and Climatology, Air Quality, Applied Meteorology and Climatology, Applications of Meteorology in the Energy Sector, Atmospheric Physics and Chemistry, Atmospheric Radiation, Atmospheric Boundary Layer, Biometeorology and Bioclimatology, Climate Dynamics, Climatic Changes, Cloud Physics, Dynamic and Synoptic Μeteorology, Extreme Events, Hydrology and Hydrometeorology, Mesoscale Meteorology, Micrometeorology/Urban Microclimate, Remote Sensing/ Satellite Meteorology and Climatology, Weather Analysis and Forecasting. The book includes all papers that have been accepted for presentation at the conference.
Publisher: Springer Science & Business Media
ISBN: 3642291724
Category : Science
Languages : en
Pages : 1223
Book Description
This book essentially comprises the proceedings of the 11th International Conference of Meteorology, Climatology and Atmospheric Physics (COMECAP 2012) that is held in Athens from 30 May to 1 June 2012. The Conference addresses researchers, professionals and students interested in the following topics: Agricultural Meteorology and Climatology, Air Quality, Applied Meteorology and Climatology, Applications of Meteorology in the Energy Sector, Atmospheric Physics and Chemistry, Atmospheric Radiation, Atmospheric Boundary Layer, Biometeorology and Bioclimatology, Climate Dynamics, Climatic Changes, Cloud Physics, Dynamic and Synoptic Μeteorology, Extreme Events, Hydrology and Hydrometeorology, Mesoscale Meteorology, Micrometeorology/Urban Microclimate, Remote Sensing/ Satellite Meteorology and Climatology, Weather Analysis and Forecasting. The book includes all papers that have been accepted for presentation at the conference.
Analytic Support of the Phillips Lab Whole Sky Imager, 1997-2001
Author: Janet E. Shields
Publisher:
ISBN:
Category : Imaging systems in meteorology
Languages : en
Pages : 34
Book Description
Publisher:
ISBN:
Category : Imaging systems in meteorology
Languages : en
Pages : 34
Book Description
Enhancement of Near-real-time Cloud Analysis and Related Analytic Support for Whole Sky Imagers
Author: Janet E. Shields
Publisher:
ISBN:
Category : Clouds
Languages : en
Pages : 50
Book Description
This report describes the work done for the Starfire Optical Range, Kirtland Air Force Base under Contract N00014-01-D-043 DO #4, between 25 May 01 and 31 September 06. This work relates to the Air Force s need to characterize the cloud distribution during day and night, for a variety of applications, including support of satellite tracking, and support of research into impact of clouds on laser communication. This contract followed Contract N00014-97-D-0350 DO #6, which will be discussed in Section 2, and is documented in Shields et al 2004b, Technical Note 265. The primary goals of Delivery Order #4 discussed in this current report included further development of day and night cloud algorithms and support of the fielded Whole Sky Imager instruments. Much of the work done under DO #4 was completed by the end of 2004. Some additional work was done in 2005 and 2006 under the DO #4 funding, but most of the SOR work during this interval was done under a follow-on contract, ONR N00014-01-D- 0043 DO #11, funded September 04. The work under DO #11 will be reported under a separate report
Publisher:
ISBN:
Category : Clouds
Languages : en
Pages : 50
Book Description
This report describes the work done for the Starfire Optical Range, Kirtland Air Force Base under Contract N00014-01-D-043 DO #4, between 25 May 01 and 31 September 06. This work relates to the Air Force s need to characterize the cloud distribution during day and night, for a variety of applications, including support of satellite tracking, and support of research into impact of clouds on laser communication. This contract followed Contract N00014-97-D-0350 DO #6, which will be discussed in Section 2, and is documented in Shields et al 2004b, Technical Note 265. The primary goals of Delivery Order #4 discussed in this current report included further development of day and night cloud algorithms and support of the fielded Whole Sky Imager instruments. Much of the work done under DO #4 was completed by the end of 2004. Some additional work was done in 2005 and 2006 under the DO #4 funding, but most of the SOR work during this interval was done under a follow-on contract, ONR N00014-01-D- 0043 DO #11, funded September 04. The work under DO #11 will be reported under a separate report