Author: Olivier Biquard
Publisher: American Mathematical Soc.
ISBN: 9780821831663
Category : Mathematics
Languages : en
Pages : 116
Book Description
The correspondence between Einstein metrics and their conformal boundaries has recently been the focus of great interest. This is particularly so in view of the relation with the physical theory of the AdS/CFT correspondence. In this book, this correspondence is seen in the wider context of asymptotically symmetric Einstein metrics, that is Einstein metrics whose curvature is asymptotic to that of a rank one symmetric space. There is an emphasis on the correspondence betweenEinstein metrics and geometric structures on their boundary at infinity: conformal structures, CR structures, and quaternionic contact structures introduced and studied in the book. Two new constructions of such Einstein metrics are given, using two different kinds of techniques: analytic methods toconstruct complete Einstein metrics, with a unified treatment of all rank one symmetric spaces, relying on harmonic analysis; algebraic methods (twistor theory) to construct local solutions of the Einstein equation near the boundary.
Asymptotically Symmetric Einstein Metrics
Author: Olivier Biquard
Publisher: American Mathematical Soc.
ISBN: 9780821831663
Category : Mathematics
Languages : en
Pages : 116
Book Description
The correspondence between Einstein metrics and their conformal boundaries has recently been the focus of great interest. This is particularly so in view of the relation with the physical theory of the AdS/CFT correspondence. In this book, this correspondence is seen in the wider context of asymptotically symmetric Einstein metrics, that is Einstein metrics whose curvature is asymptotic to that of a rank one symmetric space. There is an emphasis on the correspondence betweenEinstein metrics and geometric structures on their boundary at infinity: conformal structures, CR structures, and quaternionic contact structures introduced and studied in the book. Two new constructions of such Einstein metrics are given, using two different kinds of techniques: analytic methods toconstruct complete Einstein metrics, with a unified treatment of all rank one symmetric spaces, relying on harmonic analysis; algebraic methods (twistor theory) to construct local solutions of the Einstein equation near the boundary.
Publisher: American Mathematical Soc.
ISBN: 9780821831663
Category : Mathematics
Languages : en
Pages : 116
Book Description
The correspondence between Einstein metrics and their conformal boundaries has recently been the focus of great interest. This is particularly so in view of the relation with the physical theory of the AdS/CFT correspondence. In this book, this correspondence is seen in the wider context of asymptotically symmetric Einstein metrics, that is Einstein metrics whose curvature is asymptotic to that of a rank one symmetric space. There is an emphasis on the correspondence betweenEinstein metrics and geometric structures on their boundary at infinity: conformal structures, CR structures, and quaternionic contact structures introduced and studied in the book. Two new constructions of such Einstein metrics are given, using two different kinds of techniques: analytic methods toconstruct complete Einstein metrics, with a unified treatment of all rank one symmetric spaces, relying on harmonic analysis; algebraic methods (twistor theory) to construct local solutions of the Einstein equation near the boundary.
Geometric Complex Analysis
Author: Jisoo Byun
Publisher: Springer
ISBN: 9811316724
Category : Mathematics
Languages : en
Pages : 359
Book Description
The KSCV Symposium, the Korean Conference on Several Complex Variables, started in 1997 in an effort to promote the study of complex analysis and geometry. Since then, the conference met semi-regularly for about 10 years and then settled on being held biannually. The sixth and tenth conferences were held in 2002 and 2014 as satellite conferences to the Beijing International Congress of Mathematicians (ICM) and the Seoul ICM, respectively. The purpose of the KSCV Symposium is to organize the research talks of many leading scholars in the world, to provide an opportunity for communication, and to promote new researchers in this field.
Publisher: Springer
ISBN: 9811316724
Category : Mathematics
Languages : en
Pages : 359
Book Description
The KSCV Symposium, the Korean Conference on Several Complex Variables, started in 1997 in an effort to promote the study of complex analysis and geometry. Since then, the conference met semi-regularly for about 10 years and then settled on being held biannually. The sixth and tenth conferences were held in 2002 and 2014 as satellite conferences to the Beijing International Congress of Mathematicians (ICM) and the Seoul ICM, respectively. The purpose of the KSCV Symposium is to organize the research talks of many leading scholars in the world, to provide an opportunity for communication, and to promote new researchers in this field.
Emerging Topics on Differential Equations and Their Applications
Author: Hua Chen
Publisher: World Scientific
ISBN: 981444975X
Category : Mathematics
Languages : en
Pages : 319
Book Description
The aim of the SinoOCoJapan Conference of Young Mathematicians was to provide a forum for presenting and discussing recent trends and developments in differential equations and their applications, as well as to promote scientific exchanges and collaborations among young mathematicians both from China and Japan.The topics discussed in this proceedings include mean curvature flows, KAM theory, N-body problems, flows on Riemannian manifolds, hyperbolic systems, vortices, water waves, and reaction diffusion systems.
Publisher: World Scientific
ISBN: 981444975X
Category : Mathematics
Languages : en
Pages : 319
Book Description
The aim of the SinoOCoJapan Conference of Young Mathematicians was to provide a forum for presenting and discussing recent trends and developments in differential equations and their applications, as well as to promote scientific exchanges and collaborations among young mathematicians both from China and Japan.The topics discussed in this proceedings include mean curvature flows, KAM theory, N-body problems, flows on Riemannian manifolds, hyperbolic systems, vortices, water waves, and reaction diffusion systems.
Fredholm Operators and Einstein Metrics on Conformally Compact Manifolds
Author: John M. Lee
Publisher: American Mathematical Soc.
ISBN: 0821839152
Category : Mathematics
Languages : en
Pages : 98
Book Description
"Volume 183, number 864 (end of volume)."
Publisher: American Mathematical Soc.
ISBN: 0821839152
Category : Mathematics
Languages : en
Pages : 98
Book Description
"Volume 183, number 864 (end of volume)."
Hamiltonian Systems and Their Integrability
Author: Mich'le Audin
Publisher: American Mathematical Soc.
ISBN: 9780821844137
Category : Mathematics
Languages : en
Pages : 172
Book Description
"This book presents some modern techniques in the theory of integrable systems viewed as variations on the theme of action-angle coordinates. These techniques include analytical methods coming from the Galois theory of differential equations, as well as more classical algebro-geometric methods related to Lax equations. This book would be suitable for a graduate course in Hamiltonian systems."--BOOK JACKET.
Publisher: American Mathematical Soc.
ISBN: 9780821844137
Category : Mathematics
Languages : en
Pages : 172
Book Description
"This book presents some modern techniques in the theory of integrable systems viewed as variations on the theme of action-angle coordinates. These techniques include analytical methods coming from the Galois theory of differential equations, as well as more classical algebro-geometric methods related to Lax equations. This book would be suitable for a graduate course in Hamiltonian systems."--BOOK JACKET.
Geometric Analysis
Author: Jingyi Chen
Publisher: Springer Nature
ISBN: 3030349535
Category : Mathematics
Languages : en
Pages : 615
Book Description
This edited volume has a two-fold purpose. First, comprehensive survey articles provide a way for beginners to ease into the corresponding sub-fields. These are then supplemented by original works that give the more advanced readers a glimpse of the current research in geometric analysis and related PDEs. The book is of significant interest for researchers, including advanced Ph.D. students, working in geometric analysis. Readers who have a secondary interest in geometric analysis will benefit from the survey articles. The results included in this book will stimulate further advances in the subjects: geometric analysis, including complex differential geometry, symplectic geometry, PDEs with a geometric origin, and geometry related to topology. Contributions by Claudio Arezzo, Alberto Della Vedova, Werner Ballmann, Henrik Matthiesen, Panagiotis Polymerakis, Sun-Yung A. Chang, Zheng-Chao Han, Paul Yang, Tobias Holck Colding, William P. Minicozzi II, Panagiotis Dimakis, Richard Melrose, Akito Futaki, Hajime Ono, Jiyuan Han, Jeff A. Viaclovsky, Bruce Kleiner, John Lott, Sławomir Kołodziej, Ngoc Cuong Nguyen, Chi Li, Yuchen Liu, Chenyang Xu, YanYan Li, Luc Nguyen, Bo Wang, Shiguang Ma, Jie Qing, Xiaonan Ma, Sean Timothy Paul, Kyriakos Sergiou, Tristan Rivière, Yanir A. Rubinstein, Natasa Sesum, Jian Song, Jeffrey Streets, Neil S. Trudinger, Yu Yuan, Weiping Zhang, Xiaohua Zhu and Aleksey Zinger.
Publisher: Springer Nature
ISBN: 3030349535
Category : Mathematics
Languages : en
Pages : 615
Book Description
This edited volume has a two-fold purpose. First, comprehensive survey articles provide a way for beginners to ease into the corresponding sub-fields. These are then supplemented by original works that give the more advanced readers a glimpse of the current research in geometric analysis and related PDEs. The book is of significant interest for researchers, including advanced Ph.D. students, working in geometric analysis. Readers who have a secondary interest in geometric analysis will benefit from the survey articles. The results included in this book will stimulate further advances in the subjects: geometric analysis, including complex differential geometry, symplectic geometry, PDEs with a geometric origin, and geometry related to topology. Contributions by Claudio Arezzo, Alberto Della Vedova, Werner Ballmann, Henrik Matthiesen, Panagiotis Polymerakis, Sun-Yung A. Chang, Zheng-Chao Han, Paul Yang, Tobias Holck Colding, William P. Minicozzi II, Panagiotis Dimakis, Richard Melrose, Akito Futaki, Hajime Ono, Jiyuan Han, Jeff A. Viaclovsky, Bruce Kleiner, John Lott, Sławomir Kołodziej, Ngoc Cuong Nguyen, Chi Li, Yuchen Liu, Chenyang Xu, YanYan Li, Luc Nguyen, Bo Wang, Shiguang Ma, Jie Qing, Xiaonan Ma, Sean Timothy Paul, Kyriakos Sergiou, Tristan Rivière, Yanir A. Rubinstein, Natasa Sesum, Jian Song, Jeffrey Streets, Neil S. Trudinger, Yu Yuan, Weiping Zhang, Xiaohua Zhu and Aleksey Zinger.
An Introduction to Extremal Kahler Metrics
Author: Gábor Székelyhidi
Publisher: American Mathematical Soc.
ISBN: 1470410478
Category : Mathematics
Languages : en
Pages : 210
Book Description
A basic problem in differential geometry is to find canonical metrics on manifolds. The best known example of this is the classical uniformization theorem for Riemann surfaces. Extremal metrics were introduced by Calabi as an attempt at finding a higher-dimensional generalization of this result, in the setting of Kähler geometry. This book gives an introduction to the study of extremal Kähler metrics and in particular to the conjectural picture relating the existence of extremal metrics on projective manifolds to the stability of the underlying manifold in the sense of algebraic geometry. The book addresses some of the basic ideas on both the analytic and the algebraic sides of this picture. An overview is given of much of the necessary background material, such as basic Kähler geometry, moment maps, and geometric invariant theory. Beyond the basic definitions and properties of extremal metrics, several highlights of the theory are discussed at a level accessible to graduate students: Yau's theorem on the existence of Kähler-Einstein metrics, the Bergman kernel expansion due to Tian, Donaldson's lower bound for the Calabi energy, and Arezzo-Pacard's existence theorem for constant scalar curvature Kähler metrics on blow-ups.
Publisher: American Mathematical Soc.
ISBN: 1470410478
Category : Mathematics
Languages : en
Pages : 210
Book Description
A basic problem in differential geometry is to find canonical metrics on manifolds. The best known example of this is the classical uniformization theorem for Riemann surfaces. Extremal metrics were introduced by Calabi as an attempt at finding a higher-dimensional generalization of this result, in the setting of Kähler geometry. This book gives an introduction to the study of extremal Kähler metrics and in particular to the conjectural picture relating the existence of extremal metrics on projective manifolds to the stability of the underlying manifold in the sense of algebraic geometry. The book addresses some of the basic ideas on both the analytic and the algebraic sides of this picture. An overview is given of much of the necessary background material, such as basic Kähler geometry, moment maps, and geometric invariant theory. Beyond the basic definitions and properties of extremal metrics, several highlights of the theory are discussed at a level accessible to graduate students: Yau's theorem on the existence of Kähler-Einstein metrics, the Bergman kernel expansion due to Tian, Donaldson's lower bound for the Calabi energy, and Arezzo-Pacard's existence theorem for constant scalar curvature Kähler metrics on blow-ups.
Mathematical Reviews
Author:
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 866
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 866
Book Description
Conformal Differential Geometry
Author: Helga Baum
Publisher: Springer Science & Business Media
ISBN: 3764399090
Category : Mathematics
Languages : en
Pages : 161
Book Description
Conformal invariants (conformally invariant tensors, conformally covariant differential operators, conformal holonomy groups etc.) are of central significance in differential geometry and physics. Well-known examples of such operators are the Yamabe-, the Paneitz-, the Dirac- and the twistor operator. The aim of the seminar was to present the basic ideas and some of the recent developments around Q-curvature and conformal holonomy. The part on Q-curvature discusses its origin, its relevance in geometry, spectral theory and physics. Here the influence of ideas which have their origin in the AdS/CFT-correspondence becomes visible. The part on conformal holonomy describes recent classification results, its relation to Einstein metrics and to conformal Killing spinors, and related special geometries.
Publisher: Springer Science & Business Media
ISBN: 3764399090
Category : Mathematics
Languages : en
Pages : 161
Book Description
Conformal invariants (conformally invariant tensors, conformally covariant differential operators, conformal holonomy groups etc.) are of central significance in differential geometry and physics. Well-known examples of such operators are the Yamabe-, the Paneitz-, the Dirac- and the twistor operator. The aim of the seminar was to present the basic ideas and some of the recent developments around Q-curvature and conformal holonomy. The part on Q-curvature discusses its origin, its relevance in geometry, spectral theory and physics. Here the influence of ideas which have their origin in the AdS/CFT-correspondence becomes visible. The part on conformal holonomy describes recent classification results, its relation to Einstein metrics and to conformal Killing spinors, and related special geometries.
An Initiation to Logarithmic Sobolev Inequalities
Author: Gilles Royer
Publisher: American Mathematical Soc.
ISBN: 9780821844014
Category : Mathematics
Languages : en
Pages : 132
Book Description
This is an introduction to logarithmic Sobolev inequalities with some important applications to mathematical statistical physics. Royer begins by gathering and reviewing the necessary background material on selfadjoint operators, semigroups, Kolmogorov diffusion processes, and solutions of stochastic differential equations.
Publisher: American Mathematical Soc.
ISBN: 9780821844014
Category : Mathematics
Languages : en
Pages : 132
Book Description
This is an introduction to logarithmic Sobolev inequalities with some important applications to mathematical statistical physics. Royer begins by gathering and reviewing the necessary background material on selfadjoint operators, semigroups, Kolmogorov diffusion processes, and solutions of stochastic differential equations.