Asymptotical Mechanics of Composites

Asymptotical Mechanics of Composites PDF Author: Igor V. Andrianov
Publisher: Springer
ISBN: 3319657860
Category : Science
Languages : en
Pages : 333

Get Book Here

Book Description
In this book the authors show that it is possible to construct efficient computationally oriented models of multi-parameter complex systems by using asymptotic methods, which can, owing to their simplicity, be directly used for controlling processes arising in connection with composite material systems. The book focuses on this asymptotic-modeling-based approach because it allows us to define the most important out of numerous parameters describing the system, or, in other words, the asymptotic methods allow us to estimate the sensitivity of the system parameters. Further, the book addresses the construction of nonlocal and higher-order homogenized models. Local fields on the micro-level and the influence of so-called non-ideal contact between the matrix and inclusions are modeled and investigated. The book then studies composites with non-regular structure and cluster type composite conductivity, and analyzes edge effects in fiber composite materials. Transition of load from a fiber to a matrix for elastic and viscoelastic composites, various types of fiber composite fractures, and buckling of fibers in fiber-reinforced composites is also investigated. Last but not least, the book includes studies on perforated membranes, plates, and shells, as well as the asymptotic modeling of imperfect nonlinear interfaces.

Approximate Models of Mechanics of Composites

Approximate Models of Mechanics of Composites PDF Author: Igor V. Andrianov
Publisher: CRC Press
ISBN: 1000890201
Category : Science
Languages : en
Pages : 368

Get Book Here

Book Description
1) Provides analytical solutions based on a three-phase model for composites of various structures 2) Identifies computational models to solve problems within all applications of composite materials 3) Constructs higher approximations of the Maxwell formula 4) Proposes efficient analytical algorithms ensuring reliable computational analysis

Asymptotical Mechanics of Thin-Walled Structures

Asymptotical Mechanics of Thin-Walled Structures PDF Author: Igor V. Andrianov
Publisher: Springer Science & Business Media
ISBN: 354045246X
Category : Science
Languages : en
Pages : 527

Get Book Here

Book Description
In this book a detailed and systematic treatment of asymptotic methods in the theory of plates and shells is presented. The main features of the book are the basic principles of asymptotics and their applications, traditional approaches such as regular and singular perturbations, as well as new approaches such as the composite equations approach. The book introduces the reader to the field of asymptotic simplification of the problems of the theory of plates and shells and will be useful as a handbook of methods of asymptotic integration. Providing a state-of-the-art review of asymptotic applications, this book will be useful as an introduction to the field for novices as well as a reference book for specialists.

Asymptotic Models Of Fields In Dilute And Densely Packed Composites

Asymptotic Models Of Fields In Dilute And Densely Packed Composites PDF Author: A B Movchan
Publisher: World Scientific
ISBN: 1783261250
Category : Science
Languages : en
Pages : 203

Get Book Here

Book Description
This monograph provides a systematic study of asymptotic models of continuum mechanics for composite structures, which are either dilute (for example, two-phase composite structures with small inclusions) or densely packed (in this case inclusions may be close to touching). It is based on the results of recent research and includes a comprehensive analysis of dipole and multipole fields associated with defects in solids. The text covers static problems of elasticity in dilute composites as well as spectral problems. Applications of the mathematical models included in the book are in damage mechanics and in problems of design of composite structures that can be used as filters or polarisers of elastic waves.Dipole tensors are defined in Chapter 1 both for scalar boundary value problems for the Laplacian and for vector problems of elasticity. In Chapter 2 the dipole tensors are used in spectral problems involving domains with small defects. Chapter 3 introduces a multipole method for static problems (both electrostatics and elasticity) in composite structures containing doubly periodic arrays of circular inclusions. Chapter 4 presents a multipole method for eigenvalue problems of electromagnetism and elasticity.

Asymptotic Multiple Scale Method in Time Domain

Asymptotic Multiple Scale Method in Time Domain PDF Author: Jan Awrejcewicz
Publisher: CRC Press
ISBN: 1000581276
Category : Mathematics
Languages : en
Pages : 506

Get Book Here

Book Description
This book offers up novel research which uses analytical approaches to explore nonlinear features exhibited by various dynamic processes. Relevant to disciplines across engineering and physics, the asymptotic method combined with the multiple scale method is shown to be an efficient and intuitive way to approach mechanics. Beginning with new material on the development of cutting-edge asymptotic methods and multiple scale methods, the book introduces this method in time domain and provides examples of vibrations of systems. Clearly written throughout, it uses innovative graphics to exemplify complex concepts such as nonlinear stationary and nonstationary processes, various resonances and jump pull-in phenomena. It also demonstrates the simplification of problems through using mathematical modelling, by employing the use of limiting phase trajectories to quantify nonlinear phenomena. Particularly relevant to structural mechanics, in rods, cables, beams, plates and shells, as well as mechanical objects commonly found in everyday devices such as mobile phones and cameras, the book shows how each system is modelled, and how it behaves under various conditions. It will be of interest to engineers and professionals in mechanical engineering and structural engineering, alongside those interested in vibrations and dynamics. It will also be useful to those studying engineering maths and physics.

The Theory of Composites

The Theory of Composites PDF Author: Graeme W. Milton
Publisher: SIAM
ISBN: 1611977487
Category : Mathematics
Languages : en
Pages : 761

Get Book Here

Book Description
Composites have been studied for more than 150 years, and interest in their properties has been growing. This classic volume provides the foundations for understanding a broad range of composite properties, including electrical, magnetic, electromagnetic, elastic and viscoelastic, piezoelectric, thermal, fluid flow through porous materials, thermoelectric, pyroelectric, magnetoelectric, and conduction in the presence of a magnetic field (Hall effect). Exact solutions of the PDEs in model geometries provide one avenue of understanding composites; other avenues include microstructure-independent exact relations satisfied by effective moduli, for which the general theory is reviewed; approximation formulae for effective moduli; and series expansions for the fields and effective moduli that are the basis of numerical methods for computing these fields and moduli. The range of properties that composites can exhibit can be explored either through the model geometries or through microstructure-independent bounds on the properties. These bounds are obtained through variational principles, analytic methods, and Hilbert space approaches. Most interesting is when the properties of the composite are unlike those of the constituent materials, and there has been an explosion of interest in such composites, now known as metamaterials. The Theory of Composites surveys these aspects, among others, and complements the new body of literature that has emerged since the book was written. It remains relevant today by providing historical background, a compendium of numerous results, and through elucidating many of the tools still used today in the analysis of composite properties. This book is intended for applied mathematicians, physicists, and electrical and mechanical engineers. It will also be of interest to graduate students.

Mathematical Methods And Models In Composites

Mathematical Methods And Models In Composites PDF Author: Vladislav Mantic
Publisher: World Scientific
ISBN: 178326411X
Category : Technology & Engineering
Languages : en
Pages : 521

Get Book Here

Book Description
This book provides a representative selection of the most relevant, innovative, and useful mathematical methods and models applied to the analysis and characterization of composites and their behaviour on micro-, meso-, and macroscale. It establishes the fundamentals for meaningful and accurate theoretical and computer modelling of these materials in the future. Although the book is primarily concerned with fibre-reinforced composites, which have ever-increasing applications in fields such as aerospace, many of the results presented can be applied to other kinds of composites. The topics covered include: scaling and homogenization procedures in composite structures, thin plate and wave solutions in anisotropic materials, laminated structures, instabilities, fracture and damage analysis of composites, and highly efficient methods for simulation of composites manufacturing. The results presented are useful in the design, fabrication, testing, and industrial applications of composite components and structures. The book is written by well-known experts in different areas of applied mathematics, physics, and composite engineering and is an essential source of reference for graduate and doctoral students, as well as researchers. It is also suitable for non-experts in composites who wish to have an overview of both the mathematical methods and models used in this area and the related open problems requiring further research.

Multiscale Modeling in Solid Mechanics

Multiscale Modeling in Solid Mechanics PDF Author: Ugo Galvanetto
Publisher: Imperial College Press
ISBN: 1848163088
Category : Science
Languages : en
Pages : 349

Get Book Here

Book Description
This unique volume presents the state of the art in the field of multiscale modeling in solid mechanics, with particular emphasis on computational approaches. For the first time, contributions from both leading experts in the field and younger promising researchers are combined to give a comprehensive description of the recently proposed techniques and the engineering problems tackled using these techniques. The book begins with a detailed introduction to the theories on which different multiscale approaches are based, with regards to linear Homogenisation as well as various nonlinear approaches. It then presents advanced applications of multiscale approaches applied to nonlinear mechanical problems. Finally, the novel topic of materials with self-similar structure is discussed. Sample Chapter(s). Chapter 1: Computational Homogenisation for Non-Linear Heterogeneous Solids (808 KB). Contents: Computational Homogenisation for Non-Linear Heterogeneous Solids (V G Kouznetsova et al.); Two-Scale Asymptotic Homogenisation-Based Finite Element Analysis of Composite Materials (Q-Z Xiao & B L Karihaloo); Multi-Scale Boundary Element Modelling of Material Degradation and Fracture (G K Sfantos & M H Aliabadi); Non-Uniform Transformation Field Analysis: A Reduced Model for Multiscale Non-Linear Problems in Solid Mechanics (J-C Michel & P Suquet); Multiscale Approach for the Thermomechanical Analysis of Hierarchical Structures (M J Lefik et al.); Recent Advances in Masonry Modelling: Micro-Modelling and Homogenisation (P B Louren o); Mechanics of Materials with Self-Similar Hierarchical Microstructure (R C Picu & M A Soare). Readership: Researchers and academics in the field of heterogeneous materials and mechanical engineering; professionals in aeronautical engineering and materials science.

Asymptotic Methods for Engineers

Asymptotic Methods for Engineers PDF Author: Igor V. Andrianov
Publisher: CRC Press
ISBN: 1040032710
Category : Mathematics
Languages : en
Pages : 265

Get Book Here

Book Description
Asymptotic Methods for Engineers is based on the authors’ many years of practical experience in the application of asymptotic methods to solve engineering problems. This book is devoted to modern asymptotic methods (AM), which is widely used in engineering, applied sciences, physics, and applied mathematics. Avoiding complex formal calculations and justifications, the book’s main goal is to describe the main ideas and algorithms. Moreover, not only is there a presentation of the main AM, but there is also a focus on demonstrating their unity and inseparable connection with the methods of summation and asymptotic interpolation. The book will be useful for students and researchers from applied mathematics and physics and of interest to doctoral and graduate students, university and industry professors from various branches of engineering (mechanical, civil, electro-mechanical, etc.).

Asymptotic Analysis for Periodic Structures

Asymptotic Analysis for Periodic Structures PDF Author: Alain Bensoussan
Publisher: American Mathematical Soc.
ISBN: 0821853244
Category : Mathematics
Languages : en
Pages : 410

Get Book Here

Book Description
This is a reprinting of a book originally published in 1978. At that time it was the first book on the subject of homogenization, which is the asymptotic analysis of partial differential equations with rapidly oscillating coefficients, and as such it sets the stage for what problems to consider and what methods to use, including probabilistic methods. At the time the book was written the use of asymptotic expansions with multiple scales was new, especially their use as a theoretical tool, combined with energy methods and the construction of test functions for analysis with weak convergence methods. Before this book, multiple scale methods were primarily used for non-linear oscillation problems in the applied mathematics community, not for analyzing spatial oscillations as in homogenization. In the current printing a number of minor corrections have been made, and the bibliography was significantly expanded to include some of the most important recent references. This book gives systematic introduction of multiple scale methods for partial differential equations, including their original use for rigorous mathematical analysis in elliptic, parabolic, and hyperbolic problems, and with the use of probabilistic methods when appropriate. The book continues to be interesting and useful to readers of different backgrounds, both from pure and applied mathematics, because of its informal style of introducing the multiple scale methodology and the detailed proofs.