Author: Klaus Hackl
Publisher: CRC Press
ISBN: 9780582248755
Category : Mathematics
Languages : en
Pages : 148
Book Description
This Research Note contains papers presented at the SIAM 40th anniversary meeting organised by the editors and held in Los Angeles in 1992. The papers focus on new fundamental results in the theory of plates and shells, with particular emphasis on the treatment of different materials and the nonlinearities involved. Asymptotic methods, such as formal expansions, homogenization, and two-scale convergence, are analytical tools that pervade much of the research. Some of the papers are also concerned with existence results, especially for nonlinear problems, using various functional analytic methods.
Asymptotic Theories for Plates and Shells
Author: Klaus Hackl
Publisher: CRC Press
ISBN: 9780582248755
Category : Mathematics
Languages : en
Pages : 148
Book Description
This Research Note contains papers presented at the SIAM 40th anniversary meeting organised by the editors and held in Los Angeles in 1992. The papers focus on new fundamental results in the theory of plates and shells, with particular emphasis on the treatment of different materials and the nonlinearities involved. Asymptotic methods, such as formal expansions, homogenization, and two-scale convergence, are analytical tools that pervade much of the research. Some of the papers are also concerned with existence results, especially for nonlinear problems, using various functional analytic methods.
Publisher: CRC Press
ISBN: 9780582248755
Category : Mathematics
Languages : en
Pages : 148
Book Description
This Research Note contains papers presented at the SIAM 40th anniversary meeting organised by the editors and held in Los Angeles in 1992. The papers focus on new fundamental results in the theory of plates and shells, with particular emphasis on the treatment of different materials and the nonlinearities involved. Asymptotic methods, such as formal expansions, homogenization, and two-scale convergence, are analytical tools that pervade much of the research. Some of the papers are also concerned with existence results, especially for nonlinear problems, using various functional analytic methods.
Asymptotic Theory Of Anisotropic Plates And Shells
Author: Lenser A Aghalovyan
Publisher: World Scientific
ISBN: 9814579041
Category : Technology & Engineering
Languages : en
Pages : 377
Book Description
A consistent theory for thin anisotropic layered structures is developed starting from asymptotic analysis of 3D equations in linear elasticity. The consideration is not restricted to the traditional boundary conditions along the faces of the structure expressed in terms of stresses, originating a new type of boundary value problems, which is not governed by the classical Kirchhoff-Love assumptions. More general boundary value problems, in particular related to elastic foundations are also studied.The general asymptotic approach is illustrated by a number of particular problems for elastic and thermoelastic beams and plates. For the latter, the validity of derived approximate theories is investigated by comparison with associated exact solution. The author also develops an asymptotic approach to dynamic analysis of layered media composed of thin layers motivated by modeling of engineering structures under seismic excitation.
Publisher: World Scientific
ISBN: 9814579041
Category : Technology & Engineering
Languages : en
Pages : 377
Book Description
A consistent theory for thin anisotropic layered structures is developed starting from asymptotic analysis of 3D equations in linear elasticity. The consideration is not restricted to the traditional boundary conditions along the faces of the structure expressed in terms of stresses, originating a new type of boundary value problems, which is not governed by the classical Kirchhoff-Love assumptions. More general boundary value problems, in particular related to elastic foundations are also studied.The general asymptotic approach is illustrated by a number of particular problems for elastic and thermoelastic beams and plates. For the latter, the validity of derived approximate theories is investigated by comparison with associated exact solution. The author also develops an asymptotic approach to dynamic analysis of layered media composed of thin layers motivated by modeling of engineering structures under seismic excitation.
Asymptotic Methods in the Buckling Theory of Elastic Shells
Author: P. E. Tovstik
Publisher: World Scientific
ISBN: 9789812794567
Category : Mathematics
Languages : en
Pages : 368
Book Description
1. Equations of thin elastic shell theory. 1.1. Elements of surface theory. 1.2. Equilibrium equations and boundary conditions. 1.3. Errors of 2D shell theory of Kirchhoff-Love type. 1.4. Membrane stress state. 1.5. Technical shell theory equations. 1.6. Technical theory equations in the other cases. 1.7. Shallow shells. 1.8. Initial imperfections. 1.9. Cylindrical shells. 1.10. The potential energy of shell deformation. 1.11. Problems and exercises -- 2. Basic equations of shell buckling. 2.1. Types of elastic shell buckling. 2.2. The buckling equations. 2.3. The buckling equations for a membrane state. 2.4. buckling equations of the general stress state. 2.5. Problems and exercises -- 3. Simple buckling problems. 3.1. Buckling of a shallow convex shell. 3.2. Shallow shell buckling modes. 3.3. The non-uniqueness of buckling modes. 3.4. A circular cylindrical shell under axial compression. 3.5. A circular cylindrical shell under external pressure. 3.6. Estimates of critical load. 3.7. Problems and examples -- 4. Buckling modes localized near parallels. 4.1. Local shell buckling modes. 4.2. Construction algorithm of buckling modes. 4.3. Buckling modes of convex shells of revolution. 4.4. Buckling of shells of revolution without torsion. 4.5. Buckling of shells of revolution under torsion. 4.6. Problems and exercises -- 5. Non-homogeneous axial compression of cylindrical shells. 5.1. Buckling modes localized near generatrix. 5.2. Reconstruction of the asymptotic expansions. 5.3. Axial compression and bending of cylindrical shell. 5.4. The influence of internal pressure. 5.5. Buckling of a non-circular cylindrical shell. 5.6. Cylindrical shell with curvature of variable sign. 5.7. Problems and exercises -- 6. Buckling modes localized at a point. 6.1. Local buckling of convex shells. 6.2. Construction of the buckling mode. 6.3. Ellipsoid of revolution under combined load. 6.4. Cylindrical shell under axial compression. 6.5. Construction of the buckling modes. 6.6. Problems and exercises -- 7. Semi-momentless buckling modes. 7.1. Basic equations and boundary conditions. 7.2. Buckling modes for a conic shell. 7.3. Effect of initial membrane stress resultants. 7.4 Semi-momentless buckling modes of cylindrical shells. 7.5. Problems and exercises -- 8. Effect of boundary conditions on semi-momentless modes. 8.1. Construction algorithm for semi-momentless solutions. 8.2. Semi-momentless solutions. 8.3. Edge effect solutions. 8.4. Separation of boundary conditions. 8.5. The effect of boundary conditions on the critical load. 8.6. Boundary conditions and buckling of a cylindrical shell. 8.7. Conic shells under external pressure. 8.8. Problems and exercises -- 9. Torsion and bending of cylindrical and conic shells. 9.1. Torsion of cylindrical shells. 9.2. Cylindrical shell under combined loading. 9.3. A shell with non-constant parameters under torsion. 9.4. Bending of a cylindrical shell. 9.5. The torsion and bending of a conic shell. 9.6. Problems and exercises -- 10. Nearly cylindrical and conic shells. 10.1. Basic relations. 10.2. Boundary problem in the zeroth approximation. 10.3. Buckling of a nearly cylindrical shell. 10.4. Torsion of a nearly cylindrical shell. 10.5. Problems and exercises -- 11. Shells of revolution of negative Gaussian curvature. 11.1. Initial equations and their solutions. 11.2. Separation of the boundary conditions. 11.3. Boundary problem in the zeroth approximation. 11.4. Buckling modes without torsion. 11.5. The case of the neutral surface bending. 11.6. The buckling of a torus sector. 11.7. Shell with Gaussian curvature of variable sign. 11.8. Problems and exercises -- 12. Surface bending and shell buckling. 12.1. The transformation of potential energy. 12.2. Pure bending buckling mode of shells of revolution. 12.3. The buckling of a weakly supported shell of revolution. 12.4. Weakly supported cylindrical and conical shells. 12.5. Weakly supported shells of negative Gaussian curvature. 12.6. Problems and exercises -- 13. Buckling modes localized at an edge. 13.1. Rectangular plates under compression. 13.2. Cylindrical shells and panels under axial compression. 13.3. Cylindrical panel with a weakly supported edge. 13.4. Shallow shell with a weak edge support. 13.5. Modes of shells of revolution localized near an edge. 13.6. Buckling modes with turning points. 13.7. Modes localized near the weakest point on an edge. 13.8. Problems and exercises -- 14. Shells of revolution under general stress state. 14.1. The basic equations and edge effect solutions. 14.2. Buckling with pseudo-bending modes. 14.3. The cases of significant effect of pre-buckling strains. 14.4. The weakest parallel coinciding with an edge. 14.5. Problems and exercises.
Publisher: World Scientific
ISBN: 9789812794567
Category : Mathematics
Languages : en
Pages : 368
Book Description
1. Equations of thin elastic shell theory. 1.1. Elements of surface theory. 1.2. Equilibrium equations and boundary conditions. 1.3. Errors of 2D shell theory of Kirchhoff-Love type. 1.4. Membrane stress state. 1.5. Technical shell theory equations. 1.6. Technical theory equations in the other cases. 1.7. Shallow shells. 1.8. Initial imperfections. 1.9. Cylindrical shells. 1.10. The potential energy of shell deformation. 1.11. Problems and exercises -- 2. Basic equations of shell buckling. 2.1. Types of elastic shell buckling. 2.2. The buckling equations. 2.3. The buckling equations for a membrane state. 2.4. buckling equations of the general stress state. 2.5. Problems and exercises -- 3. Simple buckling problems. 3.1. Buckling of a shallow convex shell. 3.2. Shallow shell buckling modes. 3.3. The non-uniqueness of buckling modes. 3.4. A circular cylindrical shell under axial compression. 3.5. A circular cylindrical shell under external pressure. 3.6. Estimates of critical load. 3.7. Problems and examples -- 4. Buckling modes localized near parallels. 4.1. Local shell buckling modes. 4.2. Construction algorithm of buckling modes. 4.3. Buckling modes of convex shells of revolution. 4.4. Buckling of shells of revolution without torsion. 4.5. Buckling of shells of revolution under torsion. 4.6. Problems and exercises -- 5. Non-homogeneous axial compression of cylindrical shells. 5.1. Buckling modes localized near generatrix. 5.2. Reconstruction of the asymptotic expansions. 5.3. Axial compression and bending of cylindrical shell. 5.4. The influence of internal pressure. 5.5. Buckling of a non-circular cylindrical shell. 5.6. Cylindrical shell with curvature of variable sign. 5.7. Problems and exercises -- 6. Buckling modes localized at a point. 6.1. Local buckling of convex shells. 6.2. Construction of the buckling mode. 6.3. Ellipsoid of revolution under combined load. 6.4. Cylindrical shell under axial compression. 6.5. Construction of the buckling modes. 6.6. Problems and exercises -- 7. Semi-momentless buckling modes. 7.1. Basic equations and boundary conditions. 7.2. Buckling modes for a conic shell. 7.3. Effect of initial membrane stress resultants. 7.4 Semi-momentless buckling modes of cylindrical shells. 7.5. Problems and exercises -- 8. Effect of boundary conditions on semi-momentless modes. 8.1. Construction algorithm for semi-momentless solutions. 8.2. Semi-momentless solutions. 8.3. Edge effect solutions. 8.4. Separation of boundary conditions. 8.5. The effect of boundary conditions on the critical load. 8.6. Boundary conditions and buckling of a cylindrical shell. 8.7. Conic shells under external pressure. 8.8. Problems and exercises -- 9. Torsion and bending of cylindrical and conic shells. 9.1. Torsion of cylindrical shells. 9.2. Cylindrical shell under combined loading. 9.3. A shell with non-constant parameters under torsion. 9.4. Bending of a cylindrical shell. 9.5. The torsion and bending of a conic shell. 9.6. Problems and exercises -- 10. Nearly cylindrical and conic shells. 10.1. Basic relations. 10.2. Boundary problem in the zeroth approximation. 10.3. Buckling of a nearly cylindrical shell. 10.4. Torsion of a nearly cylindrical shell. 10.5. Problems and exercises -- 11. Shells of revolution of negative Gaussian curvature. 11.1. Initial equations and their solutions. 11.2. Separation of the boundary conditions. 11.3. Boundary problem in the zeroth approximation. 11.4. Buckling modes without torsion. 11.5. The case of the neutral surface bending. 11.6. The buckling of a torus sector. 11.7. Shell with Gaussian curvature of variable sign. 11.8. Problems and exercises -- 12. Surface bending and shell buckling. 12.1. The transformation of potential energy. 12.2. Pure bending buckling mode of shells of revolution. 12.3. The buckling of a weakly supported shell of revolution. 12.4. Weakly supported cylindrical and conical shells. 12.5. Weakly supported shells of negative Gaussian curvature. 12.6. Problems and exercises -- 13. Buckling modes localized at an edge. 13.1. Rectangular plates under compression. 13.2. Cylindrical shells and panels under axial compression. 13.3. Cylindrical panel with a weakly supported edge. 13.4. Shallow shell with a weak edge support. 13.5. Modes of shells of revolution localized near an edge. 13.6. Buckling modes with turning points. 13.7. Modes localized near the weakest point on an edge. 13.8. Problems and exercises -- 14. Shells of revolution under general stress state. 14.1. The basic equations and edge effect solutions. 14.2. Buckling with pseudo-bending modes. 14.3. The cases of significant effect of pre-buckling strains. 14.4. The weakest parallel coinciding with an edge. 14.5. Problems and exercises.
Theories of Plates and Shells
Author: Reinhold Kienzler
Publisher: Springer Science & Business Media
ISBN: 3540399054
Category : Science
Languages : en
Pages : 258
Book Description
Plate and shell theories experienced a renaissance in recent years. The potentials of smart materials, the challenges of adaptive structures, the demands of thin-film technologies and more on the one hand and the availability of newly developed mathematical tools, the tremendous increase in computer facilities and the improvement of commercial software packages on the other caused a reanimation of the scientific interest. In the present book the contributions of the participants of the EUROMECH Colloquium 444 "Critical Review of the Theories of Plates and Shells and New Applications" have been collected. The aim was to discuss the common roots of different plate and shell approaches, to review the current state of the art, and to develop future lines of research. Contributions were written by scientists with civil and mechanical engineering as well as mathematical and physical background.
Publisher: Springer Science & Business Media
ISBN: 3540399054
Category : Science
Languages : en
Pages : 258
Book Description
Plate and shell theories experienced a renaissance in recent years. The potentials of smart materials, the challenges of adaptive structures, the demands of thin-film technologies and more on the one hand and the availability of newly developed mathematical tools, the tremendous increase in computer facilities and the improvement of commercial software packages on the other caused a reanimation of the scientific interest. In the present book the contributions of the participants of the EUROMECH Colloquium 444 "Critical Review of the Theories of Plates and Shells and New Applications" have been collected. The aim was to discuss the common roots of different plate and shell approaches, to review the current state of the art, and to develop future lines of research. Contributions were written by scientists with civil and mechanical engineering as well as mathematical and physical background.
Analysis of Shells, Plates, and Beams
Author: Holm Altenbach
Publisher: Springer Nature
ISBN: 3030474917
Category : Science
Languages : en
Pages : 504
Book Description
This book commemorates the 75th birthday of Prof. George Jaiani – Georgia’s leading expert on shell theory. He is also well known outside Georgia for his individual approach to shell theory research and as an organizer of meetings, conferences and schools in the field. The collection of papers presented includes articles by scientists from various countries discussing the state of the art and new trends in the theory of shells, plates, and beams. Chapter 20 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Publisher: Springer Nature
ISBN: 3030474917
Category : Science
Languages : en
Pages : 504
Book Description
This book commemorates the 75th birthday of Prof. George Jaiani – Georgia’s leading expert on shell theory. He is also well known outside Georgia for his individual approach to shell theory research and as an organizer of meetings, conferences and schools in the field. The collection of papers presented includes articles by scientists from various countries discussing the state of the art and new trends in the theory of shells, plates, and beams. Chapter 20 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Shell Structures, Theory and Applications
Author: Wojciech Pietraszkiewicz
Publisher: CRC Press
ISBN: 9780415383905
Category : Technology & Engineering
Languages : en
Pages : 656
Book Description
Shells are basic structural elements of modern technology. Examples of shell structures include automobile bodies, domes, water and oil tanks, pipelines, ship hulls, aircraft fuselages, turbine blades, laudspeaker cones, but also balloons, parachutes, biological membranes, a human skin, a bottle of wine or a beer can. This volume contains full texts of over 100 papers presented by specialists from over 20 countries at the 8th Conference "Shell Structures: Theory and Applications", 12-14 October, 2005 in Jurata (Poland). The aim of the meeting was to bring together scientists, designers, engineers and other specialists in shell structures in order to discuss important results and new ideas in this field. The goal is to pursue more accurate theoretical models, to develop more powerful and versatile methods of analysis, and to disseminate expertise in design and maintenance of shell structures. Among the authors there are many distinguished specialists of shell structures, including the authors of general lectures: I.V. Andrianov (Ukraine), V.A. Eremeyev (Russia), A. Ibrahimbegovic (France), P. Klosowski (Poland), B.H. Kröplin (Germany), E. Ramm (Germany), J.M. Rotter (UK) and D. Steigmann (USA). The subject area of the papers covers various theoretical models and numerical analyses of strength, dynamics, stability, optimization etc. of different types of shell structures, their design and maintenance, as well as modelling of some surface-related mechanical phenomena.
Publisher: CRC Press
ISBN: 9780415383905
Category : Technology & Engineering
Languages : en
Pages : 656
Book Description
Shells are basic structural elements of modern technology. Examples of shell structures include automobile bodies, domes, water and oil tanks, pipelines, ship hulls, aircraft fuselages, turbine blades, laudspeaker cones, but also balloons, parachutes, biological membranes, a human skin, a bottle of wine or a beer can. This volume contains full texts of over 100 papers presented by specialists from over 20 countries at the 8th Conference "Shell Structures: Theory and Applications", 12-14 October, 2005 in Jurata (Poland). The aim of the meeting was to bring together scientists, designers, engineers and other specialists in shell structures in order to discuss important results and new ideas in this field. The goal is to pursue more accurate theoretical models, to develop more powerful and versatile methods of analysis, and to disseminate expertise in design and maintenance of shell structures. Among the authors there are many distinguished specialists of shell structures, including the authors of general lectures: I.V. Andrianov (Ukraine), V.A. Eremeyev (Russia), A. Ibrahimbegovic (France), P. Klosowski (Poland), B.H. Kröplin (Germany), E. Ramm (Germany), J.M. Rotter (UK) and D. Steigmann (USA). The subject area of the papers covers various theoretical models and numerical analyses of strength, dynamics, stability, optimization etc. of different types of shell structures, their design and maintenance, as well as modelling of some surface-related mechanical phenomena.
Recent Approaches in the Theory of Plates and Plate-Like Structures
Author: Holm Altenbach
Publisher: Springer
ISBN: 9783030871871
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
This book presents the various approaches in establishment the basic equations of one- and two-dimensional structural elements. In addition, the boundaries of validity of the theories and the estimation of errors in approximate theories are given. Many contributions contain not only new theories, but also new applications, which makes the book interesting for researcher and graduate students.
Publisher: Springer
ISBN: 9783030871871
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
This book presents the various approaches in establishment the basic equations of one- and two-dimensional structural elements. In addition, the boundaries of validity of the theories and the estimation of errors in approximate theories are given. Many contributions contain not only new theories, but also new applications, which makes the book interesting for researcher and graduate students.
Postbuckling Behavior Of Plates And Shells
Author: Hui-shen Shen
Publisher: World Scientific
ISBN: 9813147016
Category : Technology & Engineering
Languages : en
Pages : 697
Book Description
As an expert in structure and stress analysis, the author has written extensively on functionally graded materials (FGMs), nonlinear vibration and dynamic response of functionally graded material plates in thermal environments, buckling and postbuckling analysis of single-walled carbon nanotubes in thermal environments. This book provides a comprehensive overview of the author's works which include significant contributions to the postbuckling behavior of plates and shells under different loading and environmental conditions.This book comprises eight chapters. Each chapter contains adequate introductory material so that an engineering graduate who is familiar with basic understanding of plates and shells will be able to follow it.
Publisher: World Scientific
ISBN: 9813147016
Category : Technology & Engineering
Languages : en
Pages : 697
Book Description
As an expert in structure and stress analysis, the author has written extensively on functionally graded materials (FGMs), nonlinear vibration and dynamic response of functionally graded material plates in thermal environments, buckling and postbuckling analysis of single-walled carbon nanotubes in thermal environments. This book provides a comprehensive overview of the author's works which include significant contributions to the postbuckling behavior of plates and shells under different loading and environmental conditions.This book comprises eight chapters. Each chapter contains adequate introductory material so that an engineering graduate who is familiar with basic understanding of plates and shells will be able to follow it.
Thin Plates and Shells
Author: Eduard Ventsel
Publisher: CRC Press
ISBN: 9780203908723
Category : Mathematics
Languages : en
Pages : 688
Book Description
Presenting recent principles of thin plate and shell theories, this book emphasizes novel analytical and numerical methods for solving linear and nonlinear plate and shell dilemmas, new theories for the design and analysis of thin plate-shell structures, and real-world numerical solutions, mechanics, and plate and shell models for engineering appli
Publisher: CRC Press
ISBN: 9780203908723
Category : Mathematics
Languages : en
Pages : 688
Book Description
Presenting recent principles of thin plate and shell theories, this book emphasizes novel analytical and numerical methods for solving linear and nonlinear plate and shell dilemmas, new theories for the design and analysis of thin plate-shell structures, and real-world numerical solutions, mechanics, and plate and shell models for engineering appli
Shell and Membrane Theories in Mechanics and Biology
Author: Holm Altenbach
Publisher: Springer
ISBN: 331902535X
Category : Science
Languages : en
Pages : 325
Book Description
This book presents the latest results related to shells characterize and design shells, plates, membranes and other thin-walled structures, a multidisciplinary approach from macro- to nanoscale is required which involves the classical disciplines of mechanical/civil/materials engineering (design, analysis, and properties) and physics/biology/medicine among others. The book contains contributions of a meeting of specialists (mechanical engineers, mathematicians, physicists and others) in such areas as classical and non-classical shell theories. New trends with respect to applications in mechanical, civil and aero-space engineering, as well as in new branches like medicine and biology are presented which demand improvements of the theoretical foundations of these theories and a deeper understanding of the material behavior used in such structures.
Publisher: Springer
ISBN: 331902535X
Category : Science
Languages : en
Pages : 325
Book Description
This book presents the latest results related to shells characterize and design shells, plates, membranes and other thin-walled structures, a multidisciplinary approach from macro- to nanoscale is required which involves the classical disciplines of mechanical/civil/materials engineering (design, analysis, and properties) and physics/biology/medicine among others. The book contains contributions of a meeting of specialists (mechanical engineers, mathematicians, physicists and others) in such areas as classical and non-classical shell theories. New trends with respect to applications in mechanical, civil and aero-space engineering, as well as in new branches like medicine and biology are presented which demand improvements of the theoretical foundations of these theories and a deeper understanding of the material behavior used in such structures.