Author: Jan Awrejcewicz
Publisher: CRC Press
ISBN: 100058125X
Category : Mathematics
Languages : en
Pages : 411
Book Description
This book offers up novel research which uses analytical approaches to explore nonlinear features exhibited by various dynamic processes. Relevant to disciplines across engineering and physics, the asymptotic method combined with the multiple scale method is shown to be an efficient and intuitive way to approach mechanics. Beginning with new material on the development of cutting-edge asymptotic methods and multiple scale methods, the book introduces this method in time domain and provides examples of vibrations of systems. Clearly written throughout, it uses innovative graphics to exemplify complex concepts such as nonlinear stationary and nonstationary processes, various resonances and jump pull-in phenomena. It also demonstrates the simplification of problems through using mathematical modelling, by employing the use of limiting phase trajectories to quantify nonlinear phenomena. Particularly relevant to structural mechanics, in rods, cables, beams, plates and shells, as well as mechanical objects commonly found in everyday devices such as mobile phones and cameras, the book shows how each system is modelled, and how it behaves under various conditions. It will be of interest to engineers and professionals in mechanical engineering and structural engineering, alongside those interested in vibrations and dynamics. It will also be useful to those studying engineering maths and physics.
Asymptotic Multiple Scale Method in Time Domain
Author: Jan Awrejcewicz
Publisher: CRC Press
ISBN: 100058125X
Category : Mathematics
Languages : en
Pages : 411
Book Description
This book offers up novel research which uses analytical approaches to explore nonlinear features exhibited by various dynamic processes. Relevant to disciplines across engineering and physics, the asymptotic method combined with the multiple scale method is shown to be an efficient and intuitive way to approach mechanics. Beginning with new material on the development of cutting-edge asymptotic methods and multiple scale methods, the book introduces this method in time domain and provides examples of vibrations of systems. Clearly written throughout, it uses innovative graphics to exemplify complex concepts such as nonlinear stationary and nonstationary processes, various resonances and jump pull-in phenomena. It also demonstrates the simplification of problems through using mathematical modelling, by employing the use of limiting phase trajectories to quantify nonlinear phenomena. Particularly relevant to structural mechanics, in rods, cables, beams, plates and shells, as well as mechanical objects commonly found in everyday devices such as mobile phones and cameras, the book shows how each system is modelled, and how it behaves under various conditions. It will be of interest to engineers and professionals in mechanical engineering and structural engineering, alongside those interested in vibrations and dynamics. It will also be useful to those studying engineering maths and physics.
Publisher: CRC Press
ISBN: 100058125X
Category : Mathematics
Languages : en
Pages : 411
Book Description
This book offers up novel research which uses analytical approaches to explore nonlinear features exhibited by various dynamic processes. Relevant to disciplines across engineering and physics, the asymptotic method combined with the multiple scale method is shown to be an efficient and intuitive way to approach mechanics. Beginning with new material on the development of cutting-edge asymptotic methods and multiple scale methods, the book introduces this method in time domain and provides examples of vibrations of systems. Clearly written throughout, it uses innovative graphics to exemplify complex concepts such as nonlinear stationary and nonstationary processes, various resonances and jump pull-in phenomena. It also demonstrates the simplification of problems through using mathematical modelling, by employing the use of limiting phase trajectories to quantify nonlinear phenomena. Particularly relevant to structural mechanics, in rods, cables, beams, plates and shells, as well as mechanical objects commonly found in everyday devices such as mobile phones and cameras, the book shows how each system is modelled, and how it behaves under various conditions. It will be of interest to engineers and professionals in mechanical engineering and structural engineering, alongside those interested in vibrations and dynamics. It will also be useful to those studying engineering maths and physics.
Asymptotic Multiple Scale Method in Time Domain
Author: Jan Awrejcewicz
Publisher: CRC Press
ISBN: 1000581276
Category : Mathematics
Languages : en
Pages : 506
Book Description
This book offers up novel research which uses analytical approaches to explore nonlinear features exhibited by various dynamic processes. Relevant to disciplines across engineering and physics, the asymptotic method combined with the multiple scale method is shown to be an efficient and intuitive way to approach mechanics. Beginning with new material on the development of cutting-edge asymptotic methods and multiple scale methods, the book introduces this method in time domain and provides examples of vibrations of systems. Clearly written throughout, it uses innovative graphics to exemplify complex concepts such as nonlinear stationary and nonstationary processes, various resonances and jump pull-in phenomena. It also demonstrates the simplification of problems through using mathematical modelling, by employing the use of limiting phase trajectories to quantify nonlinear phenomena. Particularly relevant to structural mechanics, in rods, cables, beams, plates and shells, as well as mechanical objects commonly found in everyday devices such as mobile phones and cameras, the book shows how each system is modelled, and how it behaves under various conditions. It will be of interest to engineers and professionals in mechanical engineering and structural engineering, alongside those interested in vibrations and dynamics. It will also be useful to those studying engineering maths and physics.
Publisher: CRC Press
ISBN: 1000581276
Category : Mathematics
Languages : en
Pages : 506
Book Description
This book offers up novel research which uses analytical approaches to explore nonlinear features exhibited by various dynamic processes. Relevant to disciplines across engineering and physics, the asymptotic method combined with the multiple scale method is shown to be an efficient and intuitive way to approach mechanics. Beginning with new material on the development of cutting-edge asymptotic methods and multiple scale methods, the book introduces this method in time domain and provides examples of vibrations of systems. Clearly written throughout, it uses innovative graphics to exemplify complex concepts such as nonlinear stationary and nonstationary processes, various resonances and jump pull-in phenomena. It also demonstrates the simplification of problems through using mathematical modelling, by employing the use of limiting phase trajectories to quantify nonlinear phenomena. Particularly relevant to structural mechanics, in rods, cables, beams, plates and shells, as well as mechanical objects commonly found in everyday devices such as mobile phones and cameras, the book shows how each system is modelled, and how it behaves under various conditions. It will be of interest to engineers and professionals in mechanical engineering and structural engineering, alongside those interested in vibrations and dynamics. It will also be useful to those studying engineering maths and physics.
Multiple Scale and Singular Perturbation Methods
Author: J.K. Kevorkian
Publisher: Springer
ISBN: 0387942025
Category : Mathematics
Languages : en
Pages : 634
Book Description
This book is a revised and updated version, including a substantial portion of new material, of our text Perturbation Methods in Applied Mathematics (Springer Verlag, 1981). We present the material at a level that assumes some familiarity with the basics of ordinary and partial differential equations. Some of the more advanced ideas are reviewed as needed; therefore this book can serve as a text in either an advanced undergraduate course or a graduate-level course on the subject. Perturbation methods, first used by astronomers to predict the effects of small disturbances on the nominal motions of celestial bodies, have now become widely used analytical tools in virtually all branches of science. A problem lends itself to perturbation analysis if it is "close" to a simpler problem that can be solved exactly. Typically, this closeness is measured by the occurrence of a small dimensionless parameter, E, in the governing system (consisting of differential equations and boundary conditions) so that for E = 0 the resulting system is exactly solvable. The main mathematical tool used is asymptotic expansion with respect to a suitable asymptotic sequence of functions of E. In a regular perturbation problem, a straightforward procedure leads to a system of differential equations and boundary conditions for each term in the asymptotic expansion. This system can be solved recursively, and the accuracy of the result improves as E gets smaller, for all values of the independent variables throughout the domain of interest. We discuss regular perturbation problems in the first chapter.
Publisher: Springer
ISBN: 0387942025
Category : Mathematics
Languages : en
Pages : 634
Book Description
This book is a revised and updated version, including a substantial portion of new material, of our text Perturbation Methods in Applied Mathematics (Springer Verlag, 1981). We present the material at a level that assumes some familiarity with the basics of ordinary and partial differential equations. Some of the more advanced ideas are reviewed as needed; therefore this book can serve as a text in either an advanced undergraduate course or a graduate-level course on the subject. Perturbation methods, first used by astronomers to predict the effects of small disturbances on the nominal motions of celestial bodies, have now become widely used analytical tools in virtually all branches of science. A problem lends itself to perturbation analysis if it is "close" to a simpler problem that can be solved exactly. Typically, this closeness is measured by the occurrence of a small dimensionless parameter, E, in the governing system (consisting of differential equations and boundary conditions) so that for E = 0 the resulting system is exactly solvable. The main mathematical tool used is asymptotic expansion with respect to a suitable asymptotic sequence of functions of E. In a regular perturbation problem, a straightforward procedure leads to a system of differential equations and boundary conditions for each term in the asymptotic expansion. This system can be solved recursively, and the accuracy of the result improves as E gets smaller, for all values of the independent variables throughout the domain of interest. We discuss regular perturbation problems in the first chapter.
Asymptotic Methods for Engineers
Author: Igor V. Andrianov
Publisher: CRC Press
ISBN: 1040032710
Category : Mathematics
Languages : en
Pages : 265
Book Description
Asymptotic Methods for Engineers is based on the authors’ many years of practical experience in the application of asymptotic methods to solve engineering problems. This book is devoted to modern asymptotic methods (AM), which is widely used in engineering, applied sciences, physics, and applied mathematics. Avoiding complex formal calculations and justifications, the book’s main goal is to describe the main ideas and algorithms. Moreover, not only is there a presentation of the main AM, but there is also a focus on demonstrating their unity and inseparable connection with the methods of summation and asymptotic interpolation. The book will be useful for students and researchers from applied mathematics and physics and of interest to doctoral and graduate students, university and industry professors from various branches of engineering (mechanical, civil, electro-mechanical, etc.).
Publisher: CRC Press
ISBN: 1040032710
Category : Mathematics
Languages : en
Pages : 265
Book Description
Asymptotic Methods for Engineers is based on the authors’ many years of practical experience in the application of asymptotic methods to solve engineering problems. This book is devoted to modern asymptotic methods (AM), which is widely used in engineering, applied sciences, physics, and applied mathematics. Avoiding complex formal calculations and justifications, the book’s main goal is to describe the main ideas and algorithms. Moreover, not only is there a presentation of the main AM, but there is also a focus on demonstrating their unity and inseparable connection with the methods of summation and asymptotic interpolation. The book will be useful for students and researchers from applied mathematics and physics and of interest to doctoral and graduate students, university and industry professors from various branches of engineering (mechanical, civil, electro-mechanical, etc.).
Practical Multiscaling
Author: Jacob Fish
Publisher: John Wiley & Sons
ISBN: 1118534859
Category : Science
Languages : en
Pages : 420
Book Description
Practical Multiscaling covers fundamental modelling techniques aimed at bridging diverse temporal and spatial scales ranging from the atomic level to a full-scale product level. It focuses on practical multiscale methods that account for fine-scale (material) details but do not require their precise resolution. The text material evolved from over 20 years of teaching experience at Rensselaer and Columbia University, as well as from practical experience gained in the application of multiscale software. This book comprehensively covers theory and implementation, providing a detailed exposition of the state-of-the-art multiscale theories and their insertion into conventional (single-scale) finite element code architecture. The robustness and design aspects of multiscale methods are also emphasised, which is accomplished via four building blocks: upscaling of information, systematic reduction of information, characterization of information utilizing experimental data, and material optimization. To ensure the reader gains hands-on experience, a companion website hosting a lite version of the multiscale design software (MDS-Lite) is available. Key features: Combines fundamental theory and practical methods of multiscale modelling Covers the state-of-the-art multiscale theories and examines their practical usability in design Covers applications of multiscale methods Accompanied by a continuously updated website hosting the multiscale design software Illustrated with colour images Practical Multiscaling is an ideal textbook for graduate students studying multiscale science and engineering. It is also a must-have reference for government laboratories, researchers and practitioners in civil, aerospace, pharmaceutical, electronics, and automotive industries, and commercial software vendors.
Publisher: John Wiley & Sons
ISBN: 1118534859
Category : Science
Languages : en
Pages : 420
Book Description
Practical Multiscaling covers fundamental modelling techniques aimed at bridging diverse temporal and spatial scales ranging from the atomic level to a full-scale product level. It focuses on practical multiscale methods that account for fine-scale (material) details but do not require their precise resolution. The text material evolved from over 20 years of teaching experience at Rensselaer and Columbia University, as well as from practical experience gained in the application of multiscale software. This book comprehensively covers theory and implementation, providing a detailed exposition of the state-of-the-art multiscale theories and their insertion into conventional (single-scale) finite element code architecture. The robustness and design aspects of multiscale methods are also emphasised, which is accomplished via four building blocks: upscaling of information, systematic reduction of information, characterization of information utilizing experimental data, and material optimization. To ensure the reader gains hands-on experience, a companion website hosting a lite version of the multiscale design software (MDS-Lite) is available. Key features: Combines fundamental theory and practical methods of multiscale modelling Covers the state-of-the-art multiscale theories and examines their practical usability in design Covers applications of multiscale methods Accompanied by a continuously updated website hosting the multiscale design software Illustrated with colour images Practical Multiscaling is an ideal textbook for graduate students studying multiscale science and engineering. It is also a must-have reference for government laboratories, researchers and practitioners in civil, aerospace, pharmaceutical, electronics, and automotive industries, and commercial software vendors.
Research in Progress
Author:
Publisher:
ISBN:
Category : Military research
Languages : en
Pages : 644
Book Description
Publisher:
ISBN:
Category : Military research
Languages : en
Pages : 644
Book Description
Research in Progress
Author: United States. Army Research Office
Publisher:
ISBN:
Category : Military research
Languages : en
Pages : 284
Book Description
Vols. for 1977- consist of two parts: Chemistry, biological sciences, engineering sciences, metallurgy and materials science (issued in the spring); and Physics, electronics, mathematics, geosciences (issued in the fall).
Publisher:
ISBN:
Category : Military research
Languages : en
Pages : 284
Book Description
Vols. for 1977- consist of two parts: Chemistry, biological sciences, engineering sciences, metallurgy and materials science (issued in the spring); and Physics, electronics, mathematics, geosciences (issued in the fall).
Hyperbolic and Kinetic Models for Self-organised Biological Aggregations
Author: Raluca Eftimie
Publisher: Springer
ISBN: 3030025861
Category : Mathematics
Languages : en
Pages : 288
Book Description
This book focuses on the spatio-temporal patterns generated by two classes of mathematical models (of hyperbolic and kinetic types) that have been increasingly used in the past several years to describe various biological and ecological communities. Here we combine an overview of various modelling approaches for collective behaviours displayed by individuals/cells/bacteria that interact locally and non-locally, with analytical and numerical mathematical techniques that can be used to investigate the spatio-temporal patterns produced by said individuals/cells/bacteria. Richly illustrated, the book offers a valuable guide for researchers new to the field, and is also suitable as a textbook for senior undergraduate or graduate students in mathematics or related disciplines.
Publisher: Springer
ISBN: 3030025861
Category : Mathematics
Languages : en
Pages : 288
Book Description
This book focuses on the spatio-temporal patterns generated by two classes of mathematical models (of hyperbolic and kinetic types) that have been increasingly used in the past several years to describe various biological and ecological communities. Here we combine an overview of various modelling approaches for collective behaviours displayed by individuals/cells/bacteria that interact locally and non-locally, with analytical and numerical mathematical techniques that can be used to investigate the spatio-temporal patterns produced by said individuals/cells/bacteria. Richly illustrated, the book offers a valuable guide for researchers new to the field, and is also suitable as a textbook for senior undergraduate or graduate students in mathematics or related disciplines.
Parallel Processing for Scientific Computing
Author: G. Rodrigue
Publisher: SIAM
ISBN: 9780898712285
Category : Computers
Languages : en
Pages : 458
Book Description
Mathematics of Computing -- Parallelism.
Publisher: SIAM
ISBN: 9780898712285
Category : Computers
Languages : en
Pages : 458
Book Description
Mathematics of Computing -- Parallelism.
Hyperbolic Partial Differential Equations
Author: Andreas Meister
Publisher: Springer Science & Business Media
ISBN: 3322802272
Category : Mathematics
Languages : en
Pages : 329
Book Description
The book gives an introduction to the fundamental properties of hyperbolic partial differential equations und their appearance in the mathematical modelling of various problems from practice. It shows in an unique manner concepts for the numerical treatment of such equations starting from basic algorithms up actual research topics in this area. The numerical methods discussed are central and upwind schemes for structured and unstructured grids based on ENO and WENO reconstructions, pressure correction schemes like SIMPLE and PISO as well as asymptotic-induced algorithms for low-Mach number flows.
Publisher: Springer Science & Business Media
ISBN: 3322802272
Category : Mathematics
Languages : en
Pages : 329
Book Description
The book gives an introduction to the fundamental properties of hyperbolic partial differential equations und their appearance in the mathematical modelling of various problems from practice. It shows in an unique manner concepts for the numerical treatment of such equations starting from basic algorithms up actual research topics in this area. The numerical methods discussed are central and upwind schemes for structured and unstructured grids based on ENO and WENO reconstructions, pressure correction schemes like SIMPLE and PISO as well as asymptotic-induced algorithms for low-Mach number flows.