Assessment and Optimisation of Digital Radiography Systems for Clinical Use

Assessment and Optimisation of Digital Radiography Systems for Clinical Use PDF Author: Philip Doyle
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Digital imaging has long been available in radiology in the form of computed tomography (CT), magnetic resonance imaging (MRI) and ultrasound. Initially the transition to general radiography was slow and fragmented but in the last 10-15 years in particular, huge investment by the manufacturers, greater and cheaper computing power, inexpensive digital storage and high bandwidth data transfer networks have lead to an enormous increase in the number of digital radiography systems in the UK. There are a number of competing digital radiography (DR) technologies, the most common are computer radiography (CR) systems followed by indirect digital radiography (IDR) systems. To ensure and maintain diagnostic quality and effectiveness in the radiology department appropriate methods are required to evaluate and optimise the performance of DR systems. Current semi-quantitative test object based methods routinely used to examine DR performance suffer known short comings, mainly due to the subjective nature of the test results and difficulty in maintaining a constant decision threshold among observers with time. Objective image quality based measurements of noise power spectra (NPS) and modulation transfer function (MTF) are the 'gold standard' for assessing image quality. Advantages these metrics afford are due to their objective nature, the comprehensive noise analysis they permit and in the fact that they have been reported to be relatively more sensitive to changes in detector performance. The advent of DR systems and access to digital image data has opened up new opportunities in applying such measurements to routine quality control and this project initially focuses on obtaining NPS and MTF results for 12 IDR systems in routine clinical use. Appropriate automatic exposure control (AEC) device calibration and a reproducible measurement method are key to optimising X-ray equipment for digital radiography. The uses of various parameters to calibrate AEC devices specifically for DR were explored in the next part of the project and calibration methods recommended. Practical advice on dosemeter selection, measurement technique and phantoms were also given. A model was developed as part of the project to simulate CNR to optimise beam quality for chest radiography with an IDR system. The values were simulated for a chest phantom and adjusted to describe the performance of the system by inputting data on phosphor sensitivity, the signal transfer function (STF), the scatter removal method and the automatic exposure control (AEC) responses. The simulated values showed good agreement with empirical data measured from images of the phantom and so provide validation of the calculation methodology. It was then possible to apply the calculation technique to imaging of tissues to investigate optimisation of exposure parameters. The behaviour of a range of imaging phosphors in terms of energy response and variation in CNR with tube potential and various filtration options were investigated. Optimum exposure factors were presented in terms of kV-mAs regulation curves and the large dose savings achieved using additional metal filters were emphasised. Optimum tube potentials for imaging a simulated lesion in patient equivalent thicknesses of water ranging from 5-40 cm thick for example were: 90-110kVp for CsI (IDR); 80-100kVp for Gd2O2S (screen /film); and 65-85kVp for BaFBrI. Plots of CNR values allowed useful conclusions regarding the expected clinical operation of the various DR phosphors. For example 80-90 kVp was appropriate for maintaining image quality over an entire chest radiograph in CR whereas higher tube potentials of 100-110 kVp were indicated for the CsI IDR system. Better image quality is achievable for pelvic radiographs at lower tube potentials for the majority of detectors however, for gadolinium oxysulphide 70-80 kVp gives the best image quality. The relative phosphor sensitivity and energy response with tube potential were also calculated for a range of DR phosphors. Caesium iodide image receptors were significantly more sensitive than the other systems. The percentage relative sensitivities of the image receptors averaged over the diagnostic kV range were used to provide a method of indicating what the likely clinically operational dose levels would be, for example results suggested 1.8 μGy for CsI (IDR); 2.8 μGy for Gd2O2S (Screen/film); and 3.8 μGy for BaFBrI (CR). The efficiency of scatter reduction methods for DR using a range of grids and air gaps were also reviewed. The performance of various scatter reduction methods: 17/70; 15/80; 8/40 Pb grids and 15 cm and 20 cm air gaps were evaluated in terms of the improvement in CNR they afford, using two different models. The first, simpler model assumed quantum noise only and a photon counting detector. The second model incorporated quantum noise and system noise for a specific CsI detector and assumed the detector was energy integrating. Both models allowed the same general conclusions and suggest improved performance for air gaps over grids for medium to low scatter factors and both models suggest the best choice of grid for digital systems is the 15/80 grid, achieving comparable or better performance than air gaps for high scatter factors. The development, analysis and discussion of AEC calibration, CNR value, phosphor energy response, and scatter reduction methods are then brought together to form a practical step by step recipe that may be followed to optimise digital technology for clinical use. Finally, CNR results suggest the addition of 0.2 mm of copper filtration will have a negligible effect on image quality in DR. A comprehensive study examining the effect of copper filtration on image quality was performed using receiver operator characteristic (ROC) methodology to include observer performance in the analysis. A total of 3,600 observations from 80 radiographs and 3 observers were analysed to provide a confidence interval of 95% in detecting differences in image quality. There was no statistical difference found when 0.2 mm copper filtration was used and the benefit of the dose saving promote it as a valuable optimisation tool.

Assessment and Optimisation of Digital Radiography Systems for Clinical Use

Assessment and Optimisation of Digital Radiography Systems for Clinical Use PDF Author: Philip Doyle
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Digital imaging has long been available in radiology in the form of computed tomography (CT), magnetic resonance imaging (MRI) and ultrasound. Initially the transition to general radiography was slow and fragmented but in the last 10-15 years in particular, huge investment by the manufacturers, greater and cheaper computing power, inexpensive digital storage and high bandwidth data transfer networks have lead to an enormous increase in the number of digital radiography systems in the UK. There are a number of competing digital radiography (DR) technologies, the most common are computer radiography (CR) systems followed by indirect digital radiography (IDR) systems. To ensure and maintain diagnostic quality and effectiveness in the radiology department appropriate methods are required to evaluate and optimise the performance of DR systems. Current semi-quantitative test object based methods routinely used to examine DR performance suffer known short comings, mainly due to the subjective nature of the test results and difficulty in maintaining a constant decision threshold among observers with time. Objective image quality based measurements of noise power spectra (NPS) and modulation transfer function (MTF) are the 'gold standard' for assessing image quality. Advantages these metrics afford are due to their objective nature, the comprehensive noise analysis they permit and in the fact that they have been reported to be relatively more sensitive to changes in detector performance. The advent of DR systems and access to digital image data has opened up new opportunities in applying such measurements to routine quality control and this project initially focuses on obtaining NPS and MTF results for 12 IDR systems in routine clinical use. Appropriate automatic exposure control (AEC) device calibration and a reproducible measurement method are key to optimising X-ray equipment for digital radiography. The uses of various parameters to calibrate AEC devices specifically for DR were explored in the next part of the project and calibration methods recommended. Practical advice on dosemeter selection, measurement technique and phantoms were also given. A model was developed as part of the project to simulate CNR to optimise beam quality for chest radiography with an IDR system. The values were simulated for a chest phantom and adjusted to describe the performance of the system by inputting data on phosphor sensitivity, the signal transfer function (STF), the scatter removal method and the automatic exposure control (AEC) responses. The simulated values showed good agreement with empirical data measured from images of the phantom and so provide validation of the calculation methodology. It was then possible to apply the calculation technique to imaging of tissues to investigate optimisation of exposure parameters. The behaviour of a range of imaging phosphors in terms of energy response and variation in CNR with tube potential and various filtration options were investigated. Optimum exposure factors were presented in terms of kV-mAs regulation curves and the large dose savings achieved using additional metal filters were emphasised. Optimum tube potentials for imaging a simulated lesion in patient equivalent thicknesses of water ranging from 5-40 cm thick for example were: 90-110kVp for CsI (IDR); 80-100kVp for Gd2O2S (screen /film); and 65-85kVp for BaFBrI. Plots of CNR values allowed useful conclusions regarding the expected clinical operation of the various DR phosphors. For example 80-90 kVp was appropriate for maintaining image quality over an entire chest radiograph in CR whereas higher tube potentials of 100-110 kVp were indicated for the CsI IDR system. Better image quality is achievable for pelvic radiographs at lower tube potentials for the majority of detectors however, for gadolinium oxysulphide 70-80 kVp gives the best image quality. The relative phosphor sensitivity and energy response with tube potential were also calculated for a range of DR phosphors. Caesium iodide image receptors were significantly more sensitive than the other systems. The percentage relative sensitivities of the image receptors averaged over the diagnostic kV range were used to provide a method of indicating what the likely clinically operational dose levels would be, for example results suggested 1.8 μGy for CsI (IDR); 2.8 μGy for Gd2O2S (Screen/film); and 3.8 μGy for BaFBrI (CR). The efficiency of scatter reduction methods for DR using a range of grids and air gaps were also reviewed. The performance of various scatter reduction methods: 17/70; 15/80; 8/40 Pb grids and 15 cm and 20 cm air gaps were evaluated in terms of the improvement in CNR they afford, using two different models. The first, simpler model assumed quantum noise only and a photon counting detector. The second model incorporated quantum noise and system noise for a specific CsI detector and assumed the detector was energy integrating. Both models allowed the same general conclusions and suggest improved performance for air gaps over grids for medium to low scatter factors and both models suggest the best choice of grid for digital systems is the 15/80 grid, achieving comparable or better performance than air gaps for high scatter factors. The development, analysis and discussion of AEC calibration, CNR value, phosphor energy response, and scatter reduction methods are then brought together to form a practical step by step recipe that may be followed to optimise digital technology for clinical use. Finally, CNR results suggest the addition of 0.2 mm of copper filtration will have a negligible effect on image quality in DR. A comprehensive study examining the effect of copper filtration on image quality was performed using receiver operator characteristic (ROC) methodology to include observer performance in the analysis. A total of 3,600 observations from 80 radiographs and 3 observers were analysed to provide a confidence interval of 95% in detecting differences in image quality. There was no statistical difference found when 0.2 mm copper filtration was used and the benefit of the dose saving promote it as a valuable optimisation tool.

Digital Imaging Systems for Plain Radiography

Digital Imaging Systems for Plain Radiography PDF Author: Luis Lanca
Publisher: Springer Science & Business Media
ISBN: 1461450667
Category : Medical
Languages : en
Pages : 173

Get Book Here

Book Description
Advances in digital technology led to the development of digital x-ray detectors that are currently in wide use for projection radiography, including Computed Radiography (CR) and Digital Radiography (DR). Digital Imaging Systems for Plain Radiography addresses the current technological methods available to medical imaging professionals to ensure the optimization of the radiological process concerning image quality and reduction of patient exposure. Based on extensive research by the authors and reference to the current literature, the book addresses how exposure parameters influence the diagnostic quality in digital systems, what the current acceptable radiation doses are for useful diagnostic images, and at what level the dose could be reduced to maintain an accurate diagnosis. The book is a valuable resource for both students learning the field and for imaging professionals to apply to their own practice while performing radiological examinations with digital systems.

Iqworks

Iqworks PDF Author: Andrew Reilly
Publisher: Lulu.com
ISBN: 1257982540
Category :
Languages : en
Pages : 499

Get Book Here

Book Description


Dose Optimization in Digital Radiography and Computed Tomography

Dose Optimization in Digital Radiography and Computed Tomography PDF Author: Euclid Seeram
Publisher: Springer Nature
ISBN: 3031228715
Category : Science
Languages : en
Pages : 110

Get Book Here

Book Description
This book addresses radiation protection of patients having digital radiography and computed tomography (CT) examinations. The literature on radiation doses to patients from these two modalities have reported that the doses to patients are high. As a result, the radiology community has focused on methods and procedures to keep these doses as low as reasonably achievable (ALARA) without compromising the diagnostic image quality. This book outlines the motivation for dose optimization in radiology, identifies and describes the ICRP principle of optimization, outlines the factors affecting the dose in digital radiography and in CT, and identifies and describes strategies used in digital radiography and in CT for dose optimization. This book is intended for all those working in digital radiography and CT environments including radiological technologists, and radiographers, radiologists, biomedical engineering technologists, and student medical physicists. It is best used as a supplement to radiologic science textbooks, and in particular, radiation protection textbooks. Furthermore, this book lays the foundations for students and practitioners engaged in research on dose reduction and dose optimization in radiology. · Provides practical and useful methods for optimization of doses from digital radiography and CT · Describes the International Commission on Radiological Protection (ICRP) principle of optimization · Outlines the factors affecting the dose in digital radiography and in computed tomography

Optimisation Strategies in Medical X-ray Imaging

Optimisation Strategies in Medical X-ray Imaging PDF Author: Sören Mattsson
Publisher:
ISBN:
Category : Radiography, Medical
Languages : en
Pages : 492

Get Book Here

Book Description


Computed Digital Radiography in Clinical Practice

Computed Digital Radiography in Clinical Practice PDF Author: Reginald E. Greene
Publisher:
ISBN:
Category : Radiography, Medical
Languages : en
Pages : 200

Get Book Here

Book Description


Digital Radiography in Practice (2nd Edition)

Digital Radiography in Practice (2nd Edition) PDF Author: Quinn B. Carroll
Publisher: Charles C Thomas Publisher
ISBN: 0398094136
Category : Medical
Languages : en
Pages : 235

Get Book Here

Book Description
This book is intended to provide medical radiography programs with an economical textbook that focuses on the practical aspects of digital radiography. In this new second edition by esteemed author Quinn B. Carroll and with content developed in close collaboration with the medical physics community and several reviewers, this is the most accurate information on digital imaging available. Terminology has been updated throughout the textbook to conform with the most recent revisions of the ASRT Radiography Curriculum Guide and the ARRT Radiography Content Specifications. Several new illustrations and helpful tables have been developed to clarify digital concepts. A new table, Operator Adjustments to Digital Image Qualities and Their Primary Controls, beautifully summarizes the effects of leveling, windowing, equalization, edge enhancement, smoothing and noise reduction, while related text reduces dozens of different manufacturers' terms to these basic operations in the table. Material on medical digital fluoroscopy and imaging informatics has been updated, with a continued emphasis on practical application and clinically useful information. Extensive support materials, including slides correlated to a student workbook, labs, comprehensive question banks and answer keys, have all been updated and improved.

General Radiography

General Radiography PDF Author: Christopher M. Hayre
Publisher: CRC Press
ISBN: 1000070069
Category : Medical
Languages : en
Pages : 273

Get Book Here

Book Description
With chapters from globally recognized academics, General Radiography shows the multifaceted approach to general radiography and how it enhances healthcare delivery. Potentially influential to how healthcare delivery is offered, it begins with the pertinent chapters examining image acquisition and dose optimization in diagnostic radiography. Next, chapters reflect and critically discuss aspects central to patient care, and imaging within trauma, critical care and pediatric situations. The final section of this book then explores the learning, teaching and education in the field of diagnostic radiography, with novel strategies illustrated.

Digital Radiography

Digital Radiography PDF Author: Euclid Seeram
Publisher: Springer Nature
ISBN: 9811565228
Category : Medical
Languages : en
Pages : 136

Get Book Here

Book Description
This book serves as a supplement to the book ‘Digital Radiography: Physical Principles and Quality Control, 2nd Edition (ISBN 978-981-13-3243-2)’ published by Springer Nature in 2019. This book includes review questions of multiple choices, true/false and short answer formats based on the chapters of the already published book along with their answers. It includes questions that mimic the nature of the questions in certification examinations of professional radiologic technologist organizations, such as the American Association of Radiological Technologists (ASRT) and the Canadian Association of Medical Radiation Technologists (CAMRT) and other certification organizations in the United Kingdom and Australia. The book includes 10-15 review questions on each of the essential topics covering the scope of digital radiography (DR), such as definition of DR, limitations of film-screen radiography, digital image processing concepts, physics and technology of computed radiography (CR), flat-panel digital radiography (FPDR), image quality descriptors including artifacts for CR and FPDR, the standardized exposure indicator, the technical aspects of digital fluoroscopy, digital mammography, digital tomosynthesis, picture archiving and communication systems (PACS), imaging informatics, quality control for DR, and radiation dose optimization in DR. The book is relevant for diagnostic radiography students, diagnostic radiology residents (MDs), radiology practitioners and biomedical engineering technologists all over the world.

Optimisation of Dose and Performance in Interventional and Digital Imaging

Optimisation of Dose and Performance in Interventional and Digital Imaging PDF Author: K. Faulkner
Publisher:
ISBN:
Category : Diagnostic imaging
Languages : en
Pages : 370

Get Book Here

Book Description