Artificial Neural Networks for Renewable Energy Systems and Real-World Applications

Artificial Neural Networks for Renewable Energy Systems and Real-World Applications PDF Author: Ammar Hamed Elsheikh
Publisher: Academic Press
ISBN: 0128231866
Category : Technology & Engineering
Languages : en
Pages : 290

Get Book Here

Book Description
Artificial Neural Networks for Renewable Energy Systems and Real-World Applications presents current trends for the solution of complex engineering problems in the application, modeling, analysis, and optimization of different energy systems and manufacturing processes. With growing research catering to the applications of neural networks in specific industrial applications, this reference provides a single resource catering to a broader perspective of ANN in renewable energy systems and manufacturing processes. ANN-based methods have attracted the attention of scientists and researchers in different engineering and industrial disciplines, making this book a useful reference for all researchers and engineers interested in artificial networks, renewable energy systems, and manufacturing process analysis. - Includes illustrative examples on the design and development of ANNS for renewable and manufacturing applications - Features computer-aided simulations presented as algorithms, pseudocodes and flowcharts - Covers ANN theory for easy reference in subsequent technology specific sections

Applications of AI and IOT in Renewable Energy

Applications of AI and IOT in Renewable Energy PDF Author: Rabindra Nath Shaw
Publisher: Academic Press
ISBN: 0323984010
Category : Technology & Engineering
Languages : en
Pages : 248

Get Book Here

Book Description
Applications of AI and IOT in Renewable Energy provides a future vision of unexplored areas and applications for Artificial Intelligence and Internet of Things in sustainable energy systems. The ideas presented in this book are backed up by original, unpublished technical research results covering topics like smart solar energy systems, intelligent dc motors and energy efficiency study of electric vehicles. In all these areas and more, applications of artificial intelligence methods, including artificial neural networks, genetic algorithms, fuzzy logic and a combination of the above in hybrid systems are included. This book is designed to assist with developing low cost, smart and efficient solutions for renewable energy systems and is intended for researchers, academics and industrial communities engaged in the study and performance prediction of renewable energy systems. - Includes future applications of AI and IOT in renewable energy - Based on case studies to give each chapter real-life context - Provides advances in renewable energy using AI and IOT with technical detail and data

Applications of Nature-Inspired Computing in Renewable Energy Systems

Applications of Nature-Inspired Computing in Renewable Energy Systems PDF Author: Mohamed Arezki Mellal
Publisher: Engineering Science Reference
ISBN: 9781799885610
Category :
Languages : en
Pages :

Get Book Here

Book Description
Renewable energy is crucial to preserve the environment. This energy involves various systems that must be optimized and assessed to provide better performance; however, the design and development of renewable energy systems remains a challenge. It is crucial to implement the latest innovative research in the field in order to develop and improve renewable energy systems. Applications of Nature-Inspired Computing in Renewable Energy Systems discusses the latest research on nature-inspired computing approaches applied to the design and development of renewable energy systems and provides new solutions to the renewable energy domain. Covering topics such as microgrids, wind power, and artificial neural networks, it is ideal for engineers, industry professionals, researchers, academicians, practitioners, teachers, and students.

Intelligent Computing Applications for Sustainable Real-World Systems

Intelligent Computing Applications for Sustainable Real-World Systems PDF Author: Manjaree Pandit
Publisher: Springer Nature
ISBN: 3030447588
Category : Technology & Engineering
Languages : en
Pages : 584

Get Book Here

Book Description
This book delves into various solution paradigms such as artificial neural network, support vector machine, wavelet transforms, evolutionary computing, swarm intelligence. During the last decade, novel solution technologies based on human and species intelligence have gained immense popularity due to their flexible and unconventional approach. New analytical tools are also being developed to handle big data processing and smart decision making. The idea behind compiling this work is to familiarize researchers, academicians, industry persons and students with various applications of intelligent techniques for producing sustainable, cost-effective and robust solutions of frequently encountered complex, real-world problems in engineering and science disciplines. The practical problems in smart grids, communication, waste management, elimination of harmful elements from nature, etc., are identified, and smart and optimal solutions are proposed.

Artificial Intelligence in Energy and Renewable Energy Systems

Artificial Intelligence in Energy and Renewable Energy Systems PDF Author: Soteris Kalogirou
Publisher: Nova Publishers
ISBN: 9781600212611
Category : Computers
Languages : en
Pages : 488

Get Book Here

Book Description
This book presents state of the art applications of artificial intelligence in energy and renewable energy systems design and modelling. It covers such topics as solar energy, wind energy, biomass and hydrogen as well as building services systems, power generation systems, combustion processes and refrigeration. In all these areas applications of artificial intelligence methods such as artificial neural networks, genetic algorithms, fuzzy logic and a combination of the above, called hybrid systems, are included. The book is intended for a wide audience ranging from the undergraduate level up to the research academic and industrial communities dealing with modelling and performance prediction of energy and renewable energy systems.

Computer Vision and Machine Intelligence for Renewable Energy Systems

Computer Vision and Machine Intelligence for Renewable Energy Systems PDF Author: Ashutosh Kumar Dubey
Publisher: Elsevier
ISBN: 0443289484
Category : Technology & Engineering
Languages : en
Pages : 389

Get Book Here

Book Description
Computer Vision and Machine Intelligence for Renewable Energy Systems offers a practical, systemic guide to the use of computer vision as an innovative tool to support renewable energy integration.This book equips readers with a variety of essential tools and applications: Part I outlines the fundamentals of computer vision and its unique benefits in renewable energy system models compared to traditional machine intelligence: minimal computing power needs, speed, and accuracy even with partial data. Part II breaks down specific techniques, including those for predictive modeling, performance prediction, market models, and mitigation measures. Part III offers case studies and applications to a wide range of renewable energy sources, and finally the future possibilities of the technology are considered. The very first book in Elsevier's cutting-edge new series Advances in Intelligent Energy Systems, Computer Vision and Machine Intelligence for Renewable Energy Systems provides engineers and renewable energy researchers with a holistic, clear introduction to this promising strategy for control and reliability in renewable energy grids. - Provides a sorely needed primer on the opportunities of computer vision techniques for renewable energy systems - Builds knowledge and tools in a systematic manner, from fundamentals to advanced applications - Includes dedicated chapters with case studies and applications for each sustainable energy source

Artificial Intelligence for Renewable Energy Systems

Artificial Intelligence for Renewable Energy Systems PDF Author: Ajay Kumar Vyas
Publisher: John Wiley & Sons
ISBN: 1119761697
Category : Computers
Languages : en
Pages : 276

Get Book Here

Book Description
ARTIFICIAL INTELLIGENCE FOR RENEWABLE ENERGY SYSTEMS Renewable energy systems, including solar, wind, biodiesel, hybrid energy, and other relevant types, have numerous advantages compared to their conventional counterparts. This book presents the application of machine learning and deep learning techniques for renewable energy system modeling, forecasting, and optimization for efficient system design. Due to the importance of renewable energy in today’s world, this book was designed to enhance the reader’s knowledge based on current developments in the field. For instance, the extraction and selection of machine learning algorithms for renewable energy systems, forecasting of wind and solar radiation are featured in the book. Also highlighted are intelligent data, renewable energy informatics systems based on supervisory control and data acquisition (SCADA); and intelligent condition monitoring of solar and wind energy systems. Moreover, an AI-based system for real-time decision-making for renewable energy systems is presented; and also demonstrated is the prediction of energy consumption in green buildings using machine learning. The chapter authors also provide both experimental and real datasets with great potential in the renewable energy sector, which apply machine learning (ML) and deep learning (DL) algorithms that will be helpful for economic and environmental forecasting of the renewable energy business. Audience The primary target audience includes research scholars, industry engineers, and graduate students working in renewable energy, electrical engineering, machine learning, information & communication technology.

Machine Learning for Energy Systems

Machine Learning for Energy Systems PDF Author: Denis Sidorov
Publisher: MDPI
ISBN: 3039433822
Category : Technology & Engineering
Languages : en
Pages : 272

Get Book Here

Book Description
This volume deals with recent advances in and applications of computational intelligence and advanced machine learning methods in power systems, heating and cooling systems, and gas transportation systems. The optimal coordinated dispatch of the multi-energy microgrids with renewable generation and storage control using advanced numerical methods is discussed. Forecasting models are designed for electrical insulator faults, the health of the battery, electrical insulator faults, wind speed and power, PV output power and transformer oil test parameters. The loads balance algorithm for an offshore wind farm is proposed. The information security problems in the energy internet are analyzed and attacked using information transmission contemporary models, based on blockchain technology. This book will be of interest, not only to electrical engineers, but also to applied mathematicians who are looking for novel challenging problems to focus on.

Intelligent Renewable Energy Systems

Intelligent Renewable Energy Systems PDF Author: Neeraj Priyadarshi
Publisher: John Wiley & Sons
ISBN: 1119786274
Category : Computers
Languages : en
Pages : 484

Get Book Here

Book Description
INTELLIGENT RENEWABLE ENERGY SYSTEMS This collection of papers on artificial intelligence and other methods for improving renewable energy systems, written by industry experts, is a reflection of the state of the art, a must-have for engineers, maintenance personnel, students, and anyone else wanting to stay abreast with current energy systems concepts and technology. Renewable energy is one of the most important subjects being studied, researched, and advanced in today’s world. From a macro level, like the stabilization of the entire world’s economy, to the micro level, like how you are going to heat or cool your home tonight, energy, specifically renewable energy, is on the forefront of the discussion. This book illustrates modelling, simulation, design and control of renewable energy systems employed with recent artificial intelligence (AI) and optimization techniques for performance enhancement. Current renewable energy sources have less power conversion efficiency because of its intermittent and fluctuating behavior. Therefore, in this regard, the recent AI and optimization techniques are able to deal with data ambiguity, noise, imprecision, and nonlinear behavior of renewable energy sources more efficiently compared to classical soft computing techniques. This book provides an extensive analysis of recent state of the art AI and optimization techniques applied to green energy systems. Subsequently, researchers, industry persons, undergraduate and graduate students involved in green energy will greatly benefit from this comprehensive volume, a must-have for any library. Audience Engineers, scientists, managers, researchers, students, and other professionals working in the field of renewable energy.

Soft Computing in Green and Renewable Energy Systems

Soft Computing in Green and Renewable Energy Systems PDF Author: Kasthurirangan Gopalakrishnan
Publisher: Springer Science & Business Media
ISBN: 3642221750
Category : Computers
Languages : en
Pages : 315

Get Book Here

Book Description
Soft Computing in Green and Renewable Energy Systems provides a practical introduction to the application of soft computing techniques and hybrid intelligent systems for designing, modeling, characterizing, optimizing, forecasting, and performance prediction of green and renewable energy systems. Research is proceeding at jet speed on renewable energy (energy derived from natural resources such as sunlight, wind, tides, rain, geothermal heat, biomass, hydrogen, etc.) as policy makers, researchers, economists, and world agencies have joined forces in finding alternative sustainable energy solutions to current critical environmental, economic, and social issues. The innovative models, environmentally benign processes, data analytics, etc. employed in renewable energy systems are computationally-intensive, non-linear and complex as well as involve a high degree of uncertainty. Soft computing technologies, such as fuzzy sets and systems, neural science and systems, evolutionary algorithms and genetic programming, and machine learning, are ideal in handling the noise, imprecision, and uncertainty in the data, and yet achieve robust, low-cost solutions. As a result, intelligent and soft computing paradigms are finding increasing applications in the study of renewable energy systems. Researchers, practitioners, undergraduate and graduate students engaged in the study of renewable energy systems will find this book very useful.