Author: Alok Choudhary
Publisher: World Scientific
ISBN: 9811265682
Category : Computers
Languages : en
Pages : 803
Book Description
This unique collection introduces AI, Machine Learning (ML), and deep neural network technologies leading to scientific discovery from the datasets generated both by supercomputer simulation and by modern experimental facilities.Huge quantities of experimental data come from many sources — telescopes, satellites, gene sequencers, accelerators, and electron microscopes, including international facilities such as the Large Hadron Collider (LHC) at CERN in Geneva and the ITER Tokamak in France. These sources generate many petabytes moving to exabytes of data per year. Extracting scientific insights from these data is a major challenge for scientists, for whom the latest AI developments will be essential.The timely handbook benefits professionals, researchers, academics, and students in all fields of science and engineering as well as AI, ML, and neural networks. Further, the vision evident in this book inspires all those who influence or are influenced by scientific progress.
Artificial Intelligence For Science: A Deep Learning Revolution
Author: Alok Choudhary
Publisher: World Scientific
ISBN: 9811265682
Category : Computers
Languages : en
Pages : 803
Book Description
This unique collection introduces AI, Machine Learning (ML), and deep neural network technologies leading to scientific discovery from the datasets generated both by supercomputer simulation and by modern experimental facilities.Huge quantities of experimental data come from many sources — telescopes, satellites, gene sequencers, accelerators, and electron microscopes, including international facilities such as the Large Hadron Collider (LHC) at CERN in Geneva and the ITER Tokamak in France. These sources generate many petabytes moving to exabytes of data per year. Extracting scientific insights from these data is a major challenge for scientists, for whom the latest AI developments will be essential.The timely handbook benefits professionals, researchers, academics, and students in all fields of science and engineering as well as AI, ML, and neural networks. Further, the vision evident in this book inspires all those who influence or are influenced by scientific progress.
Publisher: World Scientific
ISBN: 9811265682
Category : Computers
Languages : en
Pages : 803
Book Description
This unique collection introduces AI, Machine Learning (ML), and deep neural network technologies leading to scientific discovery from the datasets generated both by supercomputer simulation and by modern experimental facilities.Huge quantities of experimental data come from many sources — telescopes, satellites, gene sequencers, accelerators, and electron microscopes, including international facilities such as the Large Hadron Collider (LHC) at CERN in Geneva and the ITER Tokamak in France. These sources generate many petabytes moving to exabytes of data per year. Extracting scientific insights from these data is a major challenge for scientists, for whom the latest AI developments will be essential.The timely handbook benefits professionals, researchers, academics, and students in all fields of science and engineering as well as AI, ML, and neural networks. Further, the vision evident in this book inspires all those who influence or are influenced by scientific progress.
The Deep Learning Revolution
Author: Terrence J. Sejnowski
Publisher: MIT Press
ISBN: 026203803X
Category : Computers
Languages : en
Pages : 354
Book Description
How deep learning—from Google Translate to driverless cars to personal cognitive assistants—is changing our lives and transforming every sector of the economy. The deep learning revolution has brought us driverless cars, the greatly improved Google Translate, fluent conversations with Siri and Alexa, and enormous profits from automated trading on the New York Stock Exchange. Deep learning networks can play poker better than professional poker players and defeat a world champion at Go. In this book, Terry Sejnowski explains how deep learning went from being an arcane academic field to a disruptive technology in the information economy. Sejnowski played an important role in the founding of deep learning, as one of a small group of researchers in the 1980s who challenged the prevailing logic-and-symbol based version of AI. The new version of AI Sejnowski and others developed, which became deep learning, is fueled instead by data. Deep networks learn from data in the same way that babies experience the world, starting with fresh eyes and gradually acquiring the skills needed to navigate novel environments. Learning algorithms extract information from raw data; information can be used to create knowledge; knowledge underlies understanding; understanding leads to wisdom. Someday a driverless car will know the road better than you do and drive with more skill; a deep learning network will diagnose your illness; a personal cognitive assistant will augment your puny human brain. It took nature many millions of years to evolve human intelligence; AI is on a trajectory measured in decades. Sejnowski prepares us for a deep learning future.
Publisher: MIT Press
ISBN: 026203803X
Category : Computers
Languages : en
Pages : 354
Book Description
How deep learning—from Google Translate to driverless cars to personal cognitive assistants—is changing our lives and transforming every sector of the economy. The deep learning revolution has brought us driverless cars, the greatly improved Google Translate, fluent conversations with Siri and Alexa, and enormous profits from automated trading on the New York Stock Exchange. Deep learning networks can play poker better than professional poker players and defeat a world champion at Go. In this book, Terry Sejnowski explains how deep learning went from being an arcane academic field to a disruptive technology in the information economy. Sejnowski played an important role in the founding of deep learning, as one of a small group of researchers in the 1980s who challenged the prevailing logic-and-symbol based version of AI. The new version of AI Sejnowski and others developed, which became deep learning, is fueled instead by data. Deep networks learn from data in the same way that babies experience the world, starting with fresh eyes and gradually acquiring the skills needed to navigate novel environments. Learning algorithms extract information from raw data; information can be used to create knowledge; knowledge underlies understanding; understanding leads to wisdom. Someday a driverless car will know the road better than you do and drive with more skill; a deep learning network will diagnose your illness; a personal cognitive assistant will augment your puny human brain. It took nature many millions of years to evolve human intelligence; AI is on a trajectory measured in decades. Sejnowski prepares us for a deep learning future.
The Deep Learning Revolution
Author: Terrence J. Sejnowski
Publisher: MIT Press
ISBN: 0262346834
Category : Computers
Languages : en
Pages : 354
Book Description
How deep learning—from Google Translate to driverless cars to personal cognitive assistants—is changing our lives and transforming every sector of the economy. The deep learning revolution has brought us driverless cars, the greatly improved Google Translate, fluent conversations with Siri and Alexa, and enormous profits from automated trading on the New York Stock Exchange. Deep learning networks can play poker better than professional poker players and defeat a world champion at Go. In this book, Terry Sejnowski explains how deep learning went from being an arcane academic field to a disruptive technology in the information economy. Sejnowski played an important role in the founding of deep learning, as one of a small group of researchers in the 1980s who challenged the prevailing logic-and-symbol based version of AI. The new version of AI Sejnowski and others developed, which became deep learning, is fueled instead by data. Deep networks learn from data in the same way that babies experience the world, starting with fresh eyes and gradually acquiring the skills needed to navigate novel environments. Learning algorithms extract information from raw data; information can be used to create knowledge; knowledge underlies understanding; understanding leads to wisdom. Someday a driverless car will know the road better than you do and drive with more skill; a deep learning network will diagnose your illness; a personal cognitive assistant will augment your puny human brain. It took nature many millions of years to evolve human intelligence; AI is on a trajectory measured in decades. Sejnowski prepares us for a deep learning future.
Publisher: MIT Press
ISBN: 0262346834
Category : Computers
Languages : en
Pages : 354
Book Description
How deep learning—from Google Translate to driverless cars to personal cognitive assistants—is changing our lives and transforming every sector of the economy. The deep learning revolution has brought us driverless cars, the greatly improved Google Translate, fluent conversations with Siri and Alexa, and enormous profits from automated trading on the New York Stock Exchange. Deep learning networks can play poker better than professional poker players and defeat a world champion at Go. In this book, Terry Sejnowski explains how deep learning went from being an arcane academic field to a disruptive technology in the information economy. Sejnowski played an important role in the founding of deep learning, as one of a small group of researchers in the 1980s who challenged the prevailing logic-and-symbol based version of AI. The new version of AI Sejnowski and others developed, which became deep learning, is fueled instead by data. Deep networks learn from data in the same way that babies experience the world, starting with fresh eyes and gradually acquiring the skills needed to navigate novel environments. Learning algorithms extract information from raw data; information can be used to create knowledge; knowledge underlies understanding; understanding leads to wisdom. Someday a driverless car will know the road better than you do and drive with more skill; a deep learning network will diagnose your illness; a personal cognitive assistant will augment your puny human brain. It took nature many millions of years to evolve human intelligence; AI is on a trajectory measured in decades. Sejnowski prepares us for a deep learning future.
Artificial Intuition
Author: Carlos Perez
Publisher: Createspace Independent Publishing Platform
ISBN: 9781983895647
Category :
Languages : en
Pages : 394
Book Description
I challenge you to find a field as interesting and exciting as Deep Learning. This book is a spin-off from my previous book "The Deep Learning AI Playbook." The Playbook was meant for a professional audience. This is targeted to a much wider audience. There are two kinds of audiences, those looking to explore and those looking to optimize. There are two ways to learn, learning by exploration and learning by exploitation. This book is about exploration into the emerging field of Deep Learning. It's more like a popular science book and less of a business book. It's not going to provide any practical advice of how to use or deploy Deep Learning. However, it's a book that will explore this new field in many more perspectives. So at the very least, you'll walk away with the ability to hold a very informative and impressive conversation about this unique subject. It's my hope that having less constraints on what I can express can lead to a more insightful and novel book. There are plenty of ideas that are either too general or too speculative to fit within a business oriented book. With a business book, you always want to manage expectations. Artificial Intelligence is one of those topics that you want to keep speaking in a conservative manner. That's one reason I felt the need for this book. Perhaps the freedom to be more liberal can give readers more ideas as where this field is heading. Also, it's not just business that needs to understand Deep Learning. We are all going to be profoundly impacted by this new kind of Artificial Intelligence and it is critical we all develop at least a good intuition of how it will change the world.The images in the front cover are all generated using Deep Learning technology.
Publisher: Createspace Independent Publishing Platform
ISBN: 9781983895647
Category :
Languages : en
Pages : 394
Book Description
I challenge you to find a field as interesting and exciting as Deep Learning. This book is a spin-off from my previous book "The Deep Learning AI Playbook." The Playbook was meant for a professional audience. This is targeted to a much wider audience. There are two kinds of audiences, those looking to explore and those looking to optimize. There are two ways to learn, learning by exploration and learning by exploitation. This book is about exploration into the emerging field of Deep Learning. It's more like a popular science book and less of a business book. It's not going to provide any practical advice of how to use or deploy Deep Learning. However, it's a book that will explore this new field in many more perspectives. So at the very least, you'll walk away with the ability to hold a very informative and impressive conversation about this unique subject. It's my hope that having less constraints on what I can express can lead to a more insightful and novel book. There are plenty of ideas that are either too general or too speculative to fit within a business oriented book. With a business book, you always want to manage expectations. Artificial Intelligence is one of those topics that you want to keep speaking in a conservative manner. That's one reason I felt the need for this book. Perhaps the freedom to be more liberal can give readers more ideas as where this field is heading. Also, it's not just business that needs to understand Deep Learning. We are all going to be profoundly impacted by this new kind of Artificial Intelligence and it is critical we all develop at least a good intuition of how it will change the world.The images in the front cover are all generated using Deep Learning technology.
Deep Learning
Author: John D. Kelleher
Publisher: MIT Press
ISBN: 0262537559
Category : Computers
Languages : en
Pages : 298
Book Description
An accessible introduction to the artificial intelligence technology that enables computer vision, speech recognition, machine translation, and driverless cars. Deep learning is an artificial intelligence technology that enables computer vision, speech recognition in mobile phones, machine translation, AI games, driverless cars, and other applications. When we use consumer products from Google, Microsoft, Facebook, Apple, or Baidu, we are often interacting with a deep learning system. In this volume in the MIT Press Essential Knowledge series, computer scientist John Kelleher offers an accessible and concise but comprehensive introduction to the fundamental technology at the heart of the artificial intelligence revolution. Kelleher explains that deep learning enables data-driven decisions by identifying and extracting patterns from large datasets; its ability to learn from complex data makes deep learning ideally suited to take advantage of the rapid growth in big data and computational power. Kelleher also explains some of the basic concepts in deep learning, presents a history of advances in the field, and discusses the current state of the art. He describes the most important deep learning architectures, including autoencoders, recurrent neural networks, and long short-term networks, as well as such recent developments as Generative Adversarial Networks and capsule networks. He also provides a comprehensive (and comprehensible) introduction to the two fundamental algorithms in deep learning: gradient descent and backpropagation. Finally, Kelleher considers the future of deep learning—major trends, possible developments, and significant challenges.
Publisher: MIT Press
ISBN: 0262537559
Category : Computers
Languages : en
Pages : 298
Book Description
An accessible introduction to the artificial intelligence technology that enables computer vision, speech recognition, machine translation, and driverless cars. Deep learning is an artificial intelligence technology that enables computer vision, speech recognition in mobile phones, machine translation, AI games, driverless cars, and other applications. When we use consumer products from Google, Microsoft, Facebook, Apple, or Baidu, we are often interacting with a deep learning system. In this volume in the MIT Press Essential Knowledge series, computer scientist John Kelleher offers an accessible and concise but comprehensive introduction to the fundamental technology at the heart of the artificial intelligence revolution. Kelleher explains that deep learning enables data-driven decisions by identifying and extracting patterns from large datasets; its ability to learn from complex data makes deep learning ideally suited to take advantage of the rapid growth in big data and computational power. Kelleher also explains some of the basic concepts in deep learning, presents a history of advances in the field, and discusses the current state of the art. He describes the most important deep learning architectures, including autoencoders, recurrent neural networks, and long short-term networks, as well as such recent developments as Generative Adversarial Networks and capsule networks. He also provides a comprehensive (and comprehensible) introduction to the two fundamental algorithms in deep learning: gradient descent and backpropagation. Finally, Kelleher considers the future of deep learning—major trends, possible developments, and significant challenges.
Probabilistic Machine Learning
Author: Kevin P. Murphy
Publisher: MIT Press
ISBN: 0262369303
Category : Computers
Languages : en
Pages : 858
Book Description
A detailed and up-to-date introduction to machine learning, presented through the unifying lens of probabilistic modeling and Bayesian decision theory. This book offers a detailed and up-to-date introduction to machine learning (including deep learning) through the unifying lens of probabilistic modeling and Bayesian decision theory. The book covers mathematical background (including linear algebra and optimization), basic supervised learning (including linear and logistic regression and deep neural networks), as well as more advanced topics (including transfer learning and unsupervised learning). End-of-chapter exercises allow students to apply what they have learned, and an appendix covers notation. Probabilistic Machine Learning grew out of the author’s 2012 book, Machine Learning: A Probabilistic Perspective. More than just a simple update, this is a completely new book that reflects the dramatic developments in the field since 2012, most notably deep learning. In addition, the new book is accompanied by online Python code, using libraries such as scikit-learn, JAX, PyTorch, and Tensorflow, which can be used to reproduce nearly all the figures; this code can be run inside a web browser using cloud-based notebooks, and provides a practical complement to the theoretical topics discussed in the book. This introductory text will be followed by a sequel that covers more advanced topics, taking the same probabilistic approach.
Publisher: MIT Press
ISBN: 0262369303
Category : Computers
Languages : en
Pages : 858
Book Description
A detailed and up-to-date introduction to machine learning, presented through the unifying lens of probabilistic modeling and Bayesian decision theory. This book offers a detailed and up-to-date introduction to machine learning (including deep learning) through the unifying lens of probabilistic modeling and Bayesian decision theory. The book covers mathematical background (including linear algebra and optimization), basic supervised learning (including linear and logistic regression and deep neural networks), as well as more advanced topics (including transfer learning and unsupervised learning). End-of-chapter exercises allow students to apply what they have learned, and an appendix covers notation. Probabilistic Machine Learning grew out of the author’s 2012 book, Machine Learning: A Probabilistic Perspective. More than just a simple update, this is a completely new book that reflects the dramatic developments in the field since 2012, most notably deep learning. In addition, the new book is accompanied by online Python code, using libraries such as scikit-learn, JAX, PyTorch, and Tensorflow, which can be used to reproduce nearly all the figures; this code can be run inside a web browser using cloud-based notebooks, and provides a practical complement to the theoretical topics discussed in the book. This introductory text will be followed by a sequel that covers more advanced topics, taking the same probabilistic approach.
Compassionate Artificial Intelligence
Author: Amit Ray
Publisher: Compassionate AI Lab (An Imprint of Inner Light Publishers)
ISBN: 9382123466
Category : Computers
Languages : en
Pages : 161
Book Description
In this book Dr. Amit Ray describes the principles, algorithms and frameworks for incorporating compassion, kindness and empathy in machine. This is a milestone book on Artificial Intelligence. Compassionate AI address the issues for creating solutions for some of the challenges the humanity is facing today, like the need for compassionate care-giving, helping physically and mentally challenged people, reducing human pain and diseases, stopping nuclear warfare, preventing mass destruction weapons, tackling terrorism and stopping the exploitation of innocent citizens by monster governments through digital surveillance. The book also talks about compassionate AI for precision medicine, new drug discovery, education, and legal system. Dr. Ray explained the DeepCompassion algorithms, five design principles and eleven key behavioral principle of compassionate AI systems. The book also explained several compassionate AI projects. Compassionate AI is the best practical guide for AI students, researchers, entrepreneurs, business leaders looking to get true value from the adoption of compassion in machine learning technology.
Publisher: Compassionate AI Lab (An Imprint of Inner Light Publishers)
ISBN: 9382123466
Category : Computers
Languages : en
Pages : 161
Book Description
In this book Dr. Amit Ray describes the principles, algorithms and frameworks for incorporating compassion, kindness and empathy in machine. This is a milestone book on Artificial Intelligence. Compassionate AI address the issues for creating solutions for some of the challenges the humanity is facing today, like the need for compassionate care-giving, helping physically and mentally challenged people, reducing human pain and diseases, stopping nuclear warfare, preventing mass destruction weapons, tackling terrorism and stopping the exploitation of innocent citizens by monster governments through digital surveillance. The book also talks about compassionate AI for precision medicine, new drug discovery, education, and legal system. Dr. Ray explained the DeepCompassion algorithms, five design principles and eleven key behavioral principle of compassionate AI systems. The book also explained several compassionate AI projects. Compassionate AI is the best practical guide for AI students, researchers, entrepreneurs, business leaders looking to get true value from the adoption of compassion in machine learning technology.
Gods and Robots
Author: Adrienne Mayor
Publisher: Princeton University Press
ISBN: 0691202265
Category : History
Languages : en
Pages : 294
Book Description
Traces the story of how ancient cultures envisioned artificial life, automata, self-moving devices and human enhancements, sharing insights into how the mythologies of the past related to and shaped ancient machine innovations.
Publisher: Princeton University Press
ISBN: 0691202265
Category : History
Languages : en
Pages : 294
Book Description
Traces the story of how ancient cultures envisioned artificial life, automata, self-moving devices and human enhancements, sharing insights into how the mythologies of the past related to and shaped ancient machine innovations.
Automated Machine Learning
Author: Frank Hutter
Publisher: Springer
ISBN: 3030053180
Category : Computers
Languages : en
Pages : 223
Book Description
This open access book presents the first comprehensive overview of general methods in Automated Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first series of international challenges of AutoML systems. The recent success of commercial ML applications and the rapid growth of the field has created a high demand for off-the-shelf ML methods that can be used easily and without expert knowledge. However, many of the recent machine learning successes crucially rely on human experts, who manually select appropriate ML architectures (deep learning architectures or more traditional ML workflows) and their hyperparameters. To overcome this problem, the field of AutoML targets a progressive automation of machine learning, based on principles from optimization and machine learning itself. This book serves as a point of entry into this quickly-developing field for researchers and advanced students alike, as well as providing a reference for practitioners aiming to use AutoML in their work.
Publisher: Springer
ISBN: 3030053180
Category : Computers
Languages : en
Pages : 223
Book Description
This open access book presents the first comprehensive overview of general methods in Automated Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first series of international challenges of AutoML systems. The recent success of commercial ML applications and the rapid growth of the field has created a high demand for off-the-shelf ML methods that can be used easily and without expert knowledge. However, many of the recent machine learning successes crucially rely on human experts, who manually select appropriate ML architectures (deep learning architectures or more traditional ML workflows) and their hyperparameters. To overcome this problem, the field of AutoML targets a progressive automation of machine learning, based on principles from optimization and machine learning itself. This book serves as a point of entry into this quickly-developing field for researchers and advanced students alike, as well as providing a reference for practitioners aiming to use AutoML in their work.
Deep Learning
Author: Ian Goodfellow
Publisher: MIT Press
ISBN: 0262337371
Category : Computers
Languages : en
Pages : 801
Book Description
An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.
Publisher: MIT Press
ISBN: 0262337371
Category : Computers
Languages : en
Pages : 801
Book Description
An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.