Author: Ahmed Shalaby
Publisher: Frontiers Media SA
ISBN: 2832531008
Category : Science
Languages : en
Pages : 121
Book Description
Artificial intelligence-based computer-aided diagnosis applications for brain disorders from medical imaging data, volume II
Author: Ahmed Shalaby
Publisher: Frontiers Media SA
ISBN: 2832531008
Category : Science
Languages : en
Pages : 121
Book Description
Publisher: Frontiers Media SA
ISBN: 2832531008
Category : Science
Languages : en
Pages : 121
Book Description
Artificial Intelligence in Medical Imaging
Author: Erik R. Ranschaert
Publisher: Springer
ISBN: 3319948784
Category : Medical
Languages : en
Pages : 369
Book Description
This book provides a thorough overview of the ongoing evolution in the application of artificial intelligence (AI) within healthcare and radiology, enabling readers to gain a deeper insight into the technological background of AI and the impacts of new and emerging technologies on medical imaging. After an introduction on game changers in radiology, such as deep learning technology, the technological evolution of AI in computing science and medical image computing is described, with explanation of basic principles and the types and subtypes of AI. Subsequent sections address the use of imaging biomarkers, the development and validation of AI applications, and various aspects and issues relating to the growing role of big data in radiology. Diverse real-life clinical applications of AI are then outlined for different body parts, demonstrating their ability to add value to daily radiology practices. The concluding section focuses on the impact of AI on radiology and the implications for radiologists, for example with respect to training. Written by radiologists and IT professionals, the book will be of high value for radiologists, medical/clinical physicists, IT specialists, and imaging informatics professionals.
Publisher: Springer
ISBN: 3319948784
Category : Medical
Languages : en
Pages : 369
Book Description
This book provides a thorough overview of the ongoing evolution in the application of artificial intelligence (AI) within healthcare and radiology, enabling readers to gain a deeper insight into the technological background of AI and the impacts of new and emerging technologies on medical imaging. After an introduction on game changers in radiology, such as deep learning technology, the technological evolution of AI in computing science and medical image computing is described, with explanation of basic principles and the types and subtypes of AI. Subsequent sections address the use of imaging biomarkers, the development and validation of AI applications, and various aspects and issues relating to the growing role of big data in radiology. Diverse real-life clinical applications of AI are then outlined for different body parts, demonstrating their ability to add value to daily radiology practices. The concluding section focuses on the impact of AI on radiology and the implications for radiologists, for example with respect to training. Written by radiologists and IT professionals, the book will be of high value for radiologists, medical/clinical physicists, IT specialists, and imaging informatics professionals.
Hypergraph Computation
Author: Qionghai Dai
Publisher: Springer Nature
ISBN: 9819901855
Category : Computers
Languages : en
Pages : 251
Book Description
This open access book discusses the theory and methods of hypergraph computation. Many underlying relationships among data can be represented using graphs, for example in the areas including computer vision, molecular chemistry, molecular biology, etc. In the last decade, methods like graph-based learning and neural network methods have been developed to process such data, they are particularly suitable for handling relational learning tasks. In many real-world problems, however, relationships among the objects of our interest are more complex than pair-wise. Naively squeezing the complex relationships into pairwise ones will inevitably lead to loss of information which can be expected valuable for learning tasks. Hypergraph, as a generation of graph, has shown superior performance on modelling complex correlations compared with graph. Recent years have witnessed a great popularity of researches on hypergraph-related AI methods, which have been used in computer vision, social media analysis, etc. We summarize these attempts as a new computing paradigm, called hypergraph computation, which is to formulate the high-order correlations underneath the data using hypergraph, and then conduct semantic computing on the hypergraph for different applications. The content of this book consists of hypergraph computation paradigms, hypergraph modelling, hypergraph structure evolution, hypergraph neural networks, and applications of hypergraph computation in different fields. We further summarize recent achievements and future directions on hypergraph computation in this book.
Publisher: Springer Nature
ISBN: 9819901855
Category : Computers
Languages : en
Pages : 251
Book Description
This open access book discusses the theory and methods of hypergraph computation. Many underlying relationships among data can be represented using graphs, for example in the areas including computer vision, molecular chemistry, molecular biology, etc. In the last decade, methods like graph-based learning and neural network methods have been developed to process such data, they are particularly suitable for handling relational learning tasks. In many real-world problems, however, relationships among the objects of our interest are more complex than pair-wise. Naively squeezing the complex relationships into pairwise ones will inevitably lead to loss of information which can be expected valuable for learning tasks. Hypergraph, as a generation of graph, has shown superior performance on modelling complex correlations compared with graph. Recent years have witnessed a great popularity of researches on hypergraph-related AI methods, which have been used in computer vision, social media analysis, etc. We summarize these attempts as a new computing paradigm, called hypergraph computation, which is to formulate the high-order correlations underneath the data using hypergraph, and then conduct semantic computing on the hypergraph for different applications. The content of this book consists of hypergraph computation paradigms, hypergraph modelling, hypergraph structure evolution, hypergraph neural networks, and applications of hypergraph computation in different fields. We further summarize recent achievements and future directions on hypergraph computation in this book.
Generative AI Techniques for Sustainability in Healthcare Security
Author: Shah, Imdad Ali
Publisher: IGI Global
ISBN:
Category : Medical
Languages : en
Pages : 434
Book Description
In a world of constant change, sustainability and technology emerge as pivotal elements in healthcare. Generative artificial intelligence (AI) presents the capabilities of more accurate diagnoses, personalized treatment plans, and drug discovery, while certain operations in healthcare, such as managing relationships with healthcare systems often necessitate a human touch, these processes can be augmented by generative AI. Sustainability and health security are becoming increasingly important. The relationship between sustainability and health security is significant, as environmental factors such as air pollution, climate change, and access to green spaces can all affect human health. Generative AI Techniques for Sustainability in Healthcare Security provides a comprehensive understanding of generative AI techniques and their application for sustainability in health security, empowering readers with the knowledge needed to leverage these cutting-edge technologies effectively. Covering topics such as disease detection, drug discovery and development, and sustainability, this book is a valuable resource for scientists, medical professionals, hospital administrators, researchers, technologists, academicians, and more.
Publisher: IGI Global
ISBN:
Category : Medical
Languages : en
Pages : 434
Book Description
In a world of constant change, sustainability and technology emerge as pivotal elements in healthcare. Generative artificial intelligence (AI) presents the capabilities of more accurate diagnoses, personalized treatment plans, and drug discovery, while certain operations in healthcare, such as managing relationships with healthcare systems often necessitate a human touch, these processes can be augmented by generative AI. Sustainability and health security are becoming increasingly important. The relationship between sustainability and health security is significant, as environmental factors such as air pollution, climate change, and access to green spaces can all affect human health. Generative AI Techniques for Sustainability in Healthcare Security provides a comprehensive understanding of generative AI techniques and their application for sustainability in health security, empowering readers with the knowledge needed to leverage these cutting-edge technologies effectively. Covering topics such as disease detection, drug discovery and development, and sustainability, this book is a valuable resource for scientists, medical professionals, hospital administrators, researchers, technologists, academicians, and more.
Foundations of Artificial Intelligence in Healthcare and Bioscience
Author: Louis J. Catania
Publisher: Academic Press
ISBN: 0323860052
Category : Science
Languages : en
Pages : 562
Book Description
Foundational Handbook of Artificial Intelligence in Healthcare and Bioscience: A User Friendly Guide for IT Professionals, Healthcare Providers, Researchers, and Clinicians uses color-coded illustrations to explain AI from its basics to modern technologies. Other sections cover extensive, current literature research and citations regarding AI's role in the business and clinical aspects of health care. The book provides readers with a unique opportunity to appreciate AI technology in practical terms, understand its applications, and realize its profound influence on the clinical and business aspects of health care. Artificial Intelligence is a disruptive technology that is having a profound and growing influence on the business of health care as well as medical diagnosis, treatment, research and clinical delivery. The AI relationships in health care are complex, but understandable, especially when discussed and developed from their foundational elements through to their practical applications in health care. - Provides an illustrated, foundational guide and comprehensive descriptions of what Artificial Intelligence is and how it functions - Integrates a comprehensive discussion of AI applications in the business of health care - Presents in-depth clinical and AI-related discussions on diagnostic medicine, therapeutic medicine, and prevalent disease categories with an emphasis on immunology and genetics, the two categories most influenced by AI - Includes comprehensive coverage of a variety of AI treatment applications, including medical/pharmaceutical care, nursing care, stem cell therapies, robotics, and 10 common disease categories with AI applications
Publisher: Academic Press
ISBN: 0323860052
Category : Science
Languages : en
Pages : 562
Book Description
Foundational Handbook of Artificial Intelligence in Healthcare and Bioscience: A User Friendly Guide for IT Professionals, Healthcare Providers, Researchers, and Clinicians uses color-coded illustrations to explain AI from its basics to modern technologies. Other sections cover extensive, current literature research and citations regarding AI's role in the business and clinical aspects of health care. The book provides readers with a unique opportunity to appreciate AI technology in practical terms, understand its applications, and realize its profound influence on the clinical and business aspects of health care. Artificial Intelligence is a disruptive technology that is having a profound and growing influence on the business of health care as well as medical diagnosis, treatment, research and clinical delivery. The AI relationships in health care are complex, but understandable, especially when discussed and developed from their foundational elements through to their practical applications in health care. - Provides an illustrated, foundational guide and comprehensive descriptions of what Artificial Intelligence is and how it functions - Integrates a comprehensive discussion of AI applications in the business of health care - Presents in-depth clinical and AI-related discussions on diagnostic medicine, therapeutic medicine, and prevalent disease categories with an emphasis on immunology and genetics, the two categories most influenced by AI - Includes comprehensive coverage of a variety of AI treatment applications, including medical/pharmaceutical care, nursing care, stem cell therapies, robotics, and 10 common disease categories with AI applications
Applications of Artificial Intelligence in Medical Imaging
Author: Abdulhamit Subasi
Publisher: Academic Press
ISBN: 0443184518
Category : Science
Languages : en
Pages : 381
Book Description
Applications of Artificial Intelligence in Medical Imaging provides the description of various biomedical image analysis in disease detection using AI that can be used to incorporate knowledge obtained from different medical imaging devices such as CT, X-ray, PET and ultrasound. The book discusses the use of AI for detection of several cancer types, including brain tumor, breast, pancreatic, rectal, lung colon, and skin. In addition, it explains how AI and deep learning techniques can be used to diagnose Alzheimer's, Parkinson's, COVID-19 and mental conditions. This is a valuable resource for clinicians, researchers and healthcare professionals who are interested in learning more about AI and its impact in medical/biomedical image analysis. Discusses new deep learning algorithms for image analysis and how they are used for medical images Provides several examples for each imaging technique, along with their application areas so that readers can rely on them as a clinical decision support system Describes how new AI tools may contribute significantly to the successful enhancement of a single patient's clinical knowledge to improve treatment outcomes
Publisher: Academic Press
ISBN: 0443184518
Category : Science
Languages : en
Pages : 381
Book Description
Applications of Artificial Intelligence in Medical Imaging provides the description of various biomedical image analysis in disease detection using AI that can be used to incorporate knowledge obtained from different medical imaging devices such as CT, X-ray, PET and ultrasound. The book discusses the use of AI for detection of several cancer types, including brain tumor, breast, pancreatic, rectal, lung colon, and skin. In addition, it explains how AI and deep learning techniques can be used to diagnose Alzheimer's, Parkinson's, COVID-19 and mental conditions. This is a valuable resource for clinicians, researchers and healthcare professionals who are interested in learning more about AI and its impact in medical/biomedical image analysis. Discusses new deep learning algorithms for image analysis and how they are used for medical images Provides several examples for each imaging technique, along with their application areas so that readers can rely on them as a clinical decision support system Describes how new AI tools may contribute significantly to the successful enhancement of a single patient's clinical knowledge to improve treatment outcomes
Data Science – Analytics and Applications
Author: Peter Haber
Publisher: Springer Nature
ISBN: 3658362952
Category : Computers
Languages : en
Pages : 101
Book Description
Organizations have moved already from the rigid structure of classical project management towards the adoption of agile approaches. This holds also true for software development projects, which need to be flexible to adopt to rapid requests of clients as well to reflect changes that are required due to architectural design decisions. With data science having established itself as corner stone within organizations and businesses, it is now imperative to perform this crucial step for analytical business processes as well. The non-deterministic nature of data science and its inherent analytical tasks require an interactive approach towards an evolutionary step-by-step development to realize core essential business applications and use cases. The 4th International Data Science Conference (iDSC) 2021 brought together researchers, scientists, and business experts to discuss means of establishing new ways of embracing agile approaches within the various domains of data science, such as machine learning and AI, data mining, or visualization and communication as well as case studies and best practices from leading research institutions and business companies. The proceedings include all full papers presented in the scientific track and the corresponding German abstracts as well as the short papers from the student track. Among the topics of interest are: Artificial Intelligence and Machine Learning Implementation of data mining processes Agile Data Science and Visualization Case Studies and Applications for Agile Data Science --- Organisationen sind bereits von der starren Struktur des klassischen Projektmanagements zu agilen Ansätzen übergegangen. Dies gilt auch für Softwareentwicklungsprojekte, die flexibel sein müssen, um schnell auf die Wünsche der Kunden reagieren zu können und um Änderungen zu berücksichtigen, die aufgrund von Architekturentscheidungen erforderlich sind. Nachdem sich die Datenwissenschaft als Eckpfeiler in Organisationen und Unternehmen etabliert hat, ist es nun zwingend erforderlich, diesen entscheidenden Schritt auch für analytische Geschäftsprozesse durchzuführen. Die nicht-deterministische Natur der Datenwissenschaft und die ihr innewohnenden analytischen Aufgaben erfordern einen interaktiven Ansatz für eine evolutionäre, schrittweise Entwicklung zur Realisierung der wichtigsten Geschäftsanwendungen und Anwendungsfälle. Die 4. Internationale Konferenz zur Datenwissenschaft (iDSC 2021) brachte Forscher, Wissenschaftler und Wirtschaftsexperten zusammen, um Möglichkeiten zu erörtern, wie neue Wege zur Umsetzung agiler Ansätze in den verschiedenen Bereichen der Datenwissenschaft, wie maschinelles Lernen und KI, Data Mining oder Visualisierung und Kommunikation, sowie Fallstudien und Best Practices von führenden Forschungseinrichtungen und Wirtschaftsunternehmen etabliert werden können. Der Tagungsband umfasst alle im wissenschaftlichen Track vorgestellten Volltexte und die Kurzbeiträge aus dem studentischen Track auf Englisch und die dazugehörigen Abstracts auf Deutsch. Zu den Themen, die sie interessieren, gehören unter anderem: Künstliche Intelligenz und Maschinelles Lernen Implementierung von Data-Mining-Prozessen Agile Datenwissenschaft und Visualisierung Fallstudien und Anwendungen für Agile Datenwissenschaft
Publisher: Springer Nature
ISBN: 3658362952
Category : Computers
Languages : en
Pages : 101
Book Description
Organizations have moved already from the rigid structure of classical project management towards the adoption of agile approaches. This holds also true for software development projects, which need to be flexible to adopt to rapid requests of clients as well to reflect changes that are required due to architectural design decisions. With data science having established itself as corner stone within organizations and businesses, it is now imperative to perform this crucial step for analytical business processes as well. The non-deterministic nature of data science and its inherent analytical tasks require an interactive approach towards an evolutionary step-by-step development to realize core essential business applications and use cases. The 4th International Data Science Conference (iDSC) 2021 brought together researchers, scientists, and business experts to discuss means of establishing new ways of embracing agile approaches within the various domains of data science, such as machine learning and AI, data mining, or visualization and communication as well as case studies and best practices from leading research institutions and business companies. The proceedings include all full papers presented in the scientific track and the corresponding German abstracts as well as the short papers from the student track. Among the topics of interest are: Artificial Intelligence and Machine Learning Implementation of data mining processes Agile Data Science and Visualization Case Studies and Applications for Agile Data Science --- Organisationen sind bereits von der starren Struktur des klassischen Projektmanagements zu agilen Ansätzen übergegangen. Dies gilt auch für Softwareentwicklungsprojekte, die flexibel sein müssen, um schnell auf die Wünsche der Kunden reagieren zu können und um Änderungen zu berücksichtigen, die aufgrund von Architekturentscheidungen erforderlich sind. Nachdem sich die Datenwissenschaft als Eckpfeiler in Organisationen und Unternehmen etabliert hat, ist es nun zwingend erforderlich, diesen entscheidenden Schritt auch für analytische Geschäftsprozesse durchzuführen. Die nicht-deterministische Natur der Datenwissenschaft und die ihr innewohnenden analytischen Aufgaben erfordern einen interaktiven Ansatz für eine evolutionäre, schrittweise Entwicklung zur Realisierung der wichtigsten Geschäftsanwendungen und Anwendungsfälle. Die 4. Internationale Konferenz zur Datenwissenschaft (iDSC 2021) brachte Forscher, Wissenschaftler und Wirtschaftsexperten zusammen, um Möglichkeiten zu erörtern, wie neue Wege zur Umsetzung agiler Ansätze in den verschiedenen Bereichen der Datenwissenschaft, wie maschinelles Lernen und KI, Data Mining oder Visualisierung und Kommunikation, sowie Fallstudien und Best Practices von führenden Forschungseinrichtungen und Wirtschaftsunternehmen etabliert werden können. Der Tagungsband umfasst alle im wissenschaftlichen Track vorgestellten Volltexte und die Kurzbeiträge aus dem studentischen Track auf Englisch und die dazugehörigen Abstracts auf Deutsch. Zu den Themen, die sie interessieren, gehören unter anderem: Künstliche Intelligenz und Maschinelles Lernen Implementierung von Data-Mining-Prozessen Agile Datenwissenschaft und Visualisierung Fallstudien und Anwendungen für Agile Datenwissenschaft
Innovative applications with artificial intelligence methods in neuroimaging data analysis
Author: Yao Wu
Publisher: Frontiers Media SA
ISBN: 2832511899
Category : Science
Languages : en
Pages : 201
Book Description
Publisher: Frontiers Media SA
ISBN: 2832511899
Category : Science
Languages : en
Pages : 201
Book Description
Machine Learning and Deep Learning Techniques for Medical Science
Author: K. Gayathri Devi
Publisher: CRC Press
ISBN: 1000583368
Category : Technology & Engineering
Languages : en
Pages : 351
Book Description
The application of machine learning is growing exponentially into every branch of business and science, including medical science. This book presents the integration of machine learning (ML) and deep learning (DL) algorithms that can be applied in the healthcare sector to reduce the time required by doctors, radiologists, and other medical professionals for analyzing, predicting, and diagnosing the conditions with accurate results. The book offers important key aspects in the development and implementation of ML and DL approaches toward developing prediction tools and models and improving medical diagnosis. The contributors explore the recent trends, innovations, challenges, and solutions, as well as case studies of the applications of ML and DL in intelligent system-based disease diagnosis. The chapters also highlight the basics and the need for applying mathematical aspects with reference to the development of new medical models. Authors also explore ML and DL in relation to artificial intelligence (AI) prediction tools, the discovery of drugs, neuroscience, diagnosis in multiple imaging modalities, and pattern recognition approaches to functional magnetic resonance imaging images. This book is for students and researchers of computer science and engineering, electronics and communication engineering, and information technology; for biomedical engineering researchers, academicians, and educators; and for students and professionals in other areas of the healthcare sector. Presents key aspects in the development and the implementation of ML and DL approaches toward developing prediction tools, models, and improving medical diagnosis Discusses the recent trends, innovations, challenges, solutions, and applications of intelligent system-based disease diagnosis Examines DL theories, models, and tools to enhance health information systems Explores ML and DL in relation to AI prediction tools, discovery of drugs, neuroscience, and diagnosis in multiple imaging modalities Dr. K. Gayathri Devi is a Professor at the Department of Electronics and Communication Engineering, Dr. N.G.P Institute of Technology, Tamil Nadu, India. Dr. Kishore Balasubramanian is an Assistant Professor (Senior Scale) at the Department of EEE at Dr. Mahalingam College of Engineering & Technology, Tamil Nadu, India. Dr. Le Anh Ngoc is a Director of Swinburne Innovation Space and Professor in Swinburne University of Technology (Vietnam).
Publisher: CRC Press
ISBN: 1000583368
Category : Technology & Engineering
Languages : en
Pages : 351
Book Description
The application of machine learning is growing exponentially into every branch of business and science, including medical science. This book presents the integration of machine learning (ML) and deep learning (DL) algorithms that can be applied in the healthcare sector to reduce the time required by doctors, radiologists, and other medical professionals for analyzing, predicting, and diagnosing the conditions with accurate results. The book offers important key aspects in the development and implementation of ML and DL approaches toward developing prediction tools and models and improving medical diagnosis. The contributors explore the recent trends, innovations, challenges, and solutions, as well as case studies of the applications of ML and DL in intelligent system-based disease diagnosis. The chapters also highlight the basics and the need for applying mathematical aspects with reference to the development of new medical models. Authors also explore ML and DL in relation to artificial intelligence (AI) prediction tools, the discovery of drugs, neuroscience, diagnosis in multiple imaging modalities, and pattern recognition approaches to functional magnetic resonance imaging images. This book is for students and researchers of computer science and engineering, electronics and communication engineering, and information technology; for biomedical engineering researchers, academicians, and educators; and for students and professionals in other areas of the healthcare sector. Presents key aspects in the development and the implementation of ML and DL approaches toward developing prediction tools, models, and improving medical diagnosis Discusses the recent trends, innovations, challenges, solutions, and applications of intelligent system-based disease diagnosis Examines DL theories, models, and tools to enhance health information systems Explores ML and DL in relation to AI prediction tools, discovery of drugs, neuroscience, and diagnosis in multiple imaging modalities Dr. K. Gayathri Devi is a Professor at the Department of Electronics and Communication Engineering, Dr. N.G.P Institute of Technology, Tamil Nadu, India. Dr. Kishore Balasubramanian is an Assistant Professor (Senior Scale) at the Department of EEE at Dr. Mahalingam College of Engineering & Technology, Tamil Nadu, India. Dr. Le Anh Ngoc is a Director of Swinburne Innovation Space and Professor in Swinburne University of Technology (Vietnam).
International Conference on Security, Surveillance and Artificial Intelligence (ICSSAI-2023)
Author: Debasis Chaudhuri
Publisher: CRC Press
ISBN: 1040052487
Category : Computers
Languages : en
Pages : 468
Book Description
The International Conference on Security, Surveillance & Artificial Intelligence (ICSSAI2023) was held in West Bengal, India during December 1–2, 2023. The conference was organized by the Techno India University, one of the renowned universities in the state of West Bengal which is committed for generating, disseminating and preserving knowledge.
Publisher: CRC Press
ISBN: 1040052487
Category : Computers
Languages : en
Pages : 468
Book Description
The International Conference on Security, Surveillance & Artificial Intelligence (ICSSAI2023) was held in West Bengal, India during December 1–2, 2023. The conference was organized by the Techno India University, one of the renowned universities in the state of West Bengal which is committed for generating, disseminating and preserving knowledge.