Arakelov Geometry over Adelic Curves

Arakelov Geometry over Adelic Curves PDF Author: Huayi Chen
Publisher: Springer Nature
ISBN: 9811517282
Category : Mathematics
Languages : en
Pages : 468

Get Book Here

Book Description
The purpose of this book is to build the fundament of an Arakelov theory over adelic curves in order to provide a unified framework for research on arithmetic geometry in several directions. By adelic curve is meant a field equipped with a family of absolute values parametrized by a measure space, such that the logarithmic absolute value of each non-zero element of the field is an integrable function on the measure space. In the literature, such construction has been discussed in various settings which are apparently transversal to each other. The authors first formalize the notion of adelic curves and discuss in a systematic way its algebraic covers, which are important in the study of height theory of algebraic points beyond Weil–Lang’s height theory. They then establish a theory of adelic vector bundles on adelic curves, which considerably generalizes the classic geometry of vector bundles or that of Hermitian vector bundles over an arithmetic curve. They focus on an analogue of the slope theory in the setting of adelic curves and in particular estimate the minimal slope of tensor product adelic vector bundles. Finally, by using the adelic vector bundles as a tool, a birational Arakelov geometry for projective variety over an adelic curve is developed. As an application, a vast generalization of Nakai–Moishezon’s criterion of positivity is proven in clarifying the arguments of geometric nature from several fundamental results in the classic geometry of numbers. Assuming basic knowledge of algebraic geometry and algebraic number theory, the book is almost self-contained. It is suitable for researchers in arithmetic geometry as well as graduate students focusing on these topics for their doctoral theses.

Arakelov Geometry over Adelic Curves

Arakelov Geometry over Adelic Curves PDF Author: Huayi Chen
Publisher: Springer Nature
ISBN: 9811517282
Category : Mathematics
Languages : en
Pages : 468

Get Book Here

Book Description
The purpose of this book is to build the fundament of an Arakelov theory over adelic curves in order to provide a unified framework for research on arithmetic geometry in several directions. By adelic curve is meant a field equipped with a family of absolute values parametrized by a measure space, such that the logarithmic absolute value of each non-zero element of the field is an integrable function on the measure space. In the literature, such construction has been discussed in various settings which are apparently transversal to each other. The authors first formalize the notion of adelic curves and discuss in a systematic way its algebraic covers, which are important in the study of height theory of algebraic points beyond Weil–Lang’s height theory. They then establish a theory of adelic vector bundles on adelic curves, which considerably generalizes the classic geometry of vector bundles or that of Hermitian vector bundles over an arithmetic curve. They focus on an analogue of the slope theory in the setting of adelic curves and in particular estimate the minimal slope of tensor product adelic vector bundles. Finally, by using the adelic vector bundles as a tool, a birational Arakelov geometry for projective variety over an adelic curve is developed. As an application, a vast generalization of Nakai–Moishezon’s criterion of positivity is proven in clarifying the arguments of geometric nature from several fundamental results in the classic geometry of numbers. Assuming basic knowledge of algebraic geometry and algebraic number theory, the book is almost self-contained. It is suitable for researchers in arithmetic geometry as well as graduate students focusing on these topics for their doctoral theses.

Positivity in Arakelov Geometry Over Adelic Curves

Positivity in Arakelov Geometry Over Adelic Curves PDF Author: Huayi Chen
Publisher: Springer Nature
ISBN: 3031616685
Category : Arakelov theory
Languages : en
Pages : 254

Get Book Here

Book Description
This monograph presents new research on Arakelov geometry over adelic curves, a novel theory of arithmetic geometry developed by the authors. It explores positivity conditions and establishes the Hilbert-Samuel formula and the equidistribution theorem in the context of adelic curves. Connections with several classical topics in Arakelov geometry and Diophantine geometry are highlighted, such as the arithmetic Hilbert-Samuel formula, positivity of line bundles, equidistribution of small subvarieties, and theorems resembling the Bogomolov conjecture. Detailed proofs and explanations are provided to ensure the text is accessible to both graduate students and experienced researchers.

Arakelov Geometry and Diophantine Applications

Arakelov Geometry and Diophantine Applications PDF Author: Emmanuel Peyre
Publisher: Springer Nature
ISBN: 3030575594
Category : Mathematics
Languages : en
Pages : 473

Get Book Here

Book Description
Bridging the gap between novice and expert, the aim of this book is to present in a self-contained way a number of striking examples of current diophantine problems to which Arakelov geometry has been or may be applied. Arakelov geometry can be seen as a link between algebraic geometry and diophantine geometry. Based on lectures from a summer school for graduate students, this volume consists of 12 different chapters, each written by a different author. The first chapters provide some background and introduction to the subject. These are followed by a presentation of different applications to arithmetic geometry. The final part describes the recent application of Arakelov geometry to Shimura varieties and the proof of an averaged version of Colmez's conjecture. This book thus blends initiation to fundamental tools of Arakelov geometry with original material corresponding to current research. This book will be particularly useful for graduate students and researchers interested in the connections between algebraic geometry and number theory. The prerequisites are some knowledge of number theory and algebraic geometry.

Arakelov Geometry

Arakelov Geometry PDF Author: Atsushi Moriwaki
Publisher: American Mathematical Soc.
ISBN: 1470410745
Category : Mathematics
Languages : en
Pages : 298

Get Book Here

Book Description
The main goal of this book is to present the so-called birational Arakelov geometry, which can be viewed as an arithmetic analog of the classical birational geometry, i.e., the study of big linear series on algebraic varieties. After explaining classical results about the geometry of numbers, the author starts with Arakelov geometry for arithmetic curves, and continues with Arakelov geometry of arithmetic surfaces and higher-dimensional varieties. The book includes such fundamental results as arithmetic Hilbert-Samuel formula, arithmetic Nakai-Moishezon criterion, arithmetic Bogomolov inequality, the existence of small sections, the continuity of arithmetic volume function, the Lang-Bogomolov conjecture and so on. In addition, the author presents, with full details, the proof of Faltings' Riemann-Roch theorem. Prerequisites for reading this book are the basic results of algebraic geometry and the language of schemes.

Holomorphic Morse Inequalities and Bergman Kernels

Holomorphic Morse Inequalities and Bergman Kernels PDF Author: Xiaonan Ma
Publisher: Springer Science & Business Media
ISBN: 3764381159
Category : Mathematics
Languages : en
Pages : 432

Get Book Here

Book Description
This book examines holomorphic Morse inequalities and the asymptotic expansion of the Bergman kernel on manifolds by using the heat kernel. It opens perspectives on several active areas of research in complex, Kähler and symplectic geometry. A large number of applications are also included, such as an analytic proof of Kodaira's embedding theorem, a solution of the Grauert-Riemenschneider and Shiffman conjectures, compactification of complete Kähler manifolds of pinched negative curvature, Berezin-Toeplitz quantization, weak Lefschetz theorems, and asymptotics of the Ray-Singer analytic torsion.

Multidimensional Residue Theory and Applications

Multidimensional Residue Theory and Applications PDF Author: Alekos Vidras
Publisher: American Mathematical Society
ISBN: 1470471124
Category : Mathematics
Languages : en
Pages : 556

Get Book Here

Book Description
Residue theory is an active area of complex analysis with connections and applications to fields as diverse as partial differential and integral equations, computer algebra, arithmetic or diophantine geometry, and mathematical physics. Multidimensional Residue Theory and Applications defines and studies multidimensional residues via analytic continuation for holomorphic bundle-valued current maps. This point of view offers versatility and flexibility to the tools and constructions proposed, allowing these residues to be defined and studied outside the classical case of complete intersection. The book goes on to show how these residues are algebraic in nature, and how they relate and apply to a wide range of situations, most notably to membership problems, such as the Briançon–Skoda theorem and Hilbert's Nullstellensatz, to arithmetic intersection theory and to tropical geometry. This book will supersede the existing literature in this area, which dates back more than three decades. It will be appreciated by mathematicians and graduate students in multivariate complex analysis. But thanks to the gentle treatment of the one-dimensional case in Chapter 1 and the rich background material in the appendices, it may also be read by specialists in arithmetic, diophantine, or tropical geometry, as well as in mathematical physics or computer algebra.

Algebraic K-Theory

Algebraic K-Theory PDF Author: Vasudevan Srinivas
Publisher: Springer Science & Business Media
ISBN: 1489967354
Category : Science
Languages : en
Pages : 328

Get Book Here

Book Description


Cubic Forms and the Circle Method

Cubic Forms and the Circle Method PDF Author: Tim Browning
Publisher: Springer Nature
ISBN: 3030868729
Category : Mathematics
Languages : en
Pages : 175

Get Book Here

Book Description
The Hardy–Littlewood circle method was invented over a century ago to study integer solutions to special Diophantine equations, but it has since proven to be one of the most successful all-purpose tools available to number theorists. Not only is it capable of handling remarkably general systems of polynomial equations defined over arbitrary global fields, but it can also shed light on the space of rational curves that lie on algebraic varieties. This book, in which the arithmetic of cubic polynomials takes centre stage, is aimed at bringing beginning graduate students into contact with some of the many facets of the circle method, both classical and modern. This monograph is the winner of the 2021 Ferran Sunyer i Balaguer Prize, a prestigious award for books of expository nature presenting the latest developments in an active area of research in mathematics.

Lectures on Arakelov Geometry

Lectures on Arakelov Geometry PDF Author: C. Soulé
Publisher: Cambridge University Press
ISBN: 9780521477093
Category : Mathematics
Languages : en
Pages : 190

Get Book Here

Book Description
An account for graduate students of this new technique in diophantine geometry; includes account of higher dimensional theory.

Asymptotic Methods for the Fokker-Planck Equation and the Exit Problem in Applications

Asymptotic Methods for the Fokker-Planck Equation and the Exit Problem in Applications PDF Author: Johan Grasman
Publisher: Springer Science & Business Media
ISBN: 9783540644354
Category : Mathematics
Languages : en
Pages : 242

Get Book Here

Book Description
Asymptotic methods are of great importance for practical applications, especially in dealing with boundary value problems for small stochastic perturbations. This book deals with nonlinear dynamical systems perturbed by noise. It addresses problems in which noise leads to qualitative changes, escape from the attraction domain, or extinction in population dynamics. The most likely exit point and expected escape time are determined with singular perturbation methods for the corresponding Fokker-Planck equation. The authors indicate how their techniques relate to the Itô calculus applied to the Langevin equation. The book will be useful to researchers and graduate students.