Arakelov Geometry over Adelic Curves

Arakelov Geometry over Adelic Curves PDF Author: Huayi Chen
Publisher: Springer Nature
ISBN: 9811517282
Category : Mathematics
Languages : en
Pages : 468

Get Book Here

Book Description
The purpose of this book is to build the fundament of an Arakelov theory over adelic curves in order to provide a unified framework for research on arithmetic geometry in several directions. By adelic curve is meant a field equipped with a family of absolute values parametrized by a measure space, such that the logarithmic absolute value of each non-zero element of the field is an integrable function on the measure space. In the literature, such construction has been discussed in various settings which are apparently transversal to each other. The authors first formalize the notion of adelic curves and discuss in a systematic way its algebraic covers, which are important in the study of height theory of algebraic points beyond Weil–Lang’s height theory. They then establish a theory of adelic vector bundles on adelic curves, which considerably generalizes the classic geometry of vector bundles or that of Hermitian vector bundles over an arithmetic curve. They focus on an analogue of the slope theory in the setting of adelic curves and in particular estimate the minimal slope of tensor product adelic vector bundles. Finally, by using the adelic vector bundles as a tool, a birational Arakelov geometry for projective variety over an adelic curve is developed. As an application, a vast generalization of Nakai–Moishezon’s criterion of positivity is proven in clarifying the arguments of geometric nature from several fundamental results in the classic geometry of numbers. Assuming basic knowledge of algebraic geometry and algebraic number theory, the book is almost self-contained. It is suitable for researchers in arithmetic geometry as well as graduate students focusing on these topics for their doctoral theses.

Positivity in Arakelov Geometry Over Adelic Curves

Positivity in Arakelov Geometry Over Adelic Curves PDF Author: Huayi Chen
Publisher: Springer Nature
ISBN: 3031616685
Category : Arakelov theory
Languages : en
Pages : 254

Get Book Here

Book Description
This monograph presents new research on Arakelov geometry over adelic curves, a novel theory of arithmetic geometry developed by the authors. It explores positivity conditions and establishes the Hilbert-Samuel formula and the equidistribution theorem in the context of adelic curves. Connections with several classical topics in Arakelov geometry and Diophantine geometry are highlighted, such as the arithmetic Hilbert-Samuel formula, positivity of line bundles, equidistribution of small subvarieties, and theorems resembling the Bogomolov conjecture. Detailed proofs and explanations are provided to ensure the text is accessible to both graduate students and experienced researchers.

Arakelov Geometry

Arakelov Geometry PDF Author: Atsushi Moriwaki
Publisher: American Mathematical Soc.
ISBN: 1470410745
Category : Mathematics
Languages : en
Pages : 298

Get Book Here

Book Description
The main goal of this book is to present the so-called birational Arakelov geometry, which can be viewed as an arithmetic analog of the classical birational geometry, i.e., the study of big linear series on algebraic varieties. After explaining classical results about the geometry of numbers, the author starts with Arakelov geometry for arithmetic curves, and continues with Arakelov geometry of arithmetic surfaces and higher-dimensional varieties. The book includes such fundamental results as arithmetic Hilbert-Samuel formula, arithmetic Nakai-Moishezon criterion, arithmetic Bogomolov inequality, the existence of small sections, the continuity of arithmetic volume function, the Lang-Bogomolov conjecture and so on. In addition, the author presents, with full details, the proof of Faltings' Riemann-Roch theorem. Prerequisites for reading this book are the basic results of algebraic geometry and the language of schemes.

Lectures on Arakelov Geometry

Lectures on Arakelov Geometry PDF Author: C. Soulé
Publisher: Cambridge University Press
ISBN: 9780521477093
Category : Mathematics
Languages : en
Pages : 190

Get Book Here

Book Description
An account for graduate students of this new technique in diophantine geometry; includes account of higher dimensional theory.

Arakelov Geometry and Diophantine Applications

Arakelov Geometry and Diophantine Applications PDF Author: Emmanuel Peyre
Publisher: Springer Nature
ISBN: 3030575594
Category : Mathematics
Languages : en
Pages : 469

Get Book Here

Book Description
Bridging the gap between novice and expert, the aim of this book is to present in a self-contained way a number of striking examples of current diophantine problems to which Arakelov geometry has been or may be applied. Arakelov geometry can be seen as a link between algebraic geometry and diophantine geometry. Based on lectures from a summer school for graduate students, this volume consists of 12 different chapters, each written by a different author. The first chapters provide some background and introduction to the subject. These are followed by a presentation of different applications to arithmetic geometry. The final part describes the recent application of Arakelov geometry to Shimura varieties and the proof of an averaged version of Colmez's conjecture. This book thus blends initiation to fundamental tools of Arakelov geometry with original material corresponding to current research. This book will be particularly useful for graduate students and researchers interested in the connections between algebraic geometry and number theory. The prerequisites are some knowledge of number theory and algebraic geometry.

Introduction to Subfactors

Introduction to Subfactors PDF Author: Vaughan F. R. Jones
Publisher: Cambridge University Press
ISBN: 0521584205
Category : Mathematics
Languages : en
Pages : 178

Get Book Here

Book Description
Subfactors have been a subject of considerable research activity for about 15 years and are known to have significant relations with other fields such as low dimensional topology and algebraic quantum field theory. These notes give an introduction to the subject suitable for a student who has only a little familiarity with the theory of Hilbert space. A new pictorial approach to subfactors is presented in a late ch apter.

The Mordell Conjecture

The Mordell Conjecture PDF Author: Hideaki Ikoma
Publisher: Cambridge University Press
ISBN: 1108845959
Category : Mathematics
Languages : en
Pages : 179

Get Book Here

Book Description
This book provides a self-contained proof of the Mordell conjecture (Faltings's theorem) and a concise introduction to Diophantine geometry.

Some Problems of Unlikely Intersections in Arithmetic and Geometry

Some Problems of Unlikely Intersections in Arithmetic and Geometry PDF Author: Umberto Zannier
Publisher: Princeton University Press
ISBN: 1400842719
Category : Mathematics
Languages : en
Pages : 175

Get Book Here

Book Description
This book considers the so-called Unlikely Intersections, a topic that embraces well-known issues, such as Lang's and Manin-Mumford's, concerning torsion points in subvarieties of tori or abelian varieties. More generally, the book considers algebraic subgroups that meet a given subvariety in a set of unlikely dimension. The book is an expansion of the Hermann Weyl Lectures delivered by Umberto Zannier at the Institute for Advanced Study in Princeton in May 2010. The book consists of four chapters and seven brief appendixes, the last six by David Masser. The first chapter considers multiplicative algebraic groups, presenting proofs of several developments, ranging from the origins to recent results, and discussing many applications and relations with other contexts. The second chapter considers an analogue in arithmetic and several applications of this. The third chapter introduces a new method for approaching some of these questions, and presents a detailed application of this (by Masser and the author) to a relative case of the Manin-Mumford issue. The fourth chapter focuses on the André-Oort conjecture (outlining work by Pila).

Foundations of Arithmetic Differential Geometry

Foundations of Arithmetic Differential Geometry PDF Author: Alexandru Buium
Publisher: American Mathematical Soc.
ISBN: 147043623X
Category : Mathematics
Languages : en
Pages : 357

Get Book Here

Book Description
The aim of this book is to introduce and develop an arithmetic analogue of classical differential geometry. In this new geometry the ring of integers plays the role of a ring of functions on an infinite dimensional manifold. The role of coordinate functions on this manifold is played by the prime numbers. The role of partial derivatives of functions with respect to the coordinates is played by the Fermat quotients of integers with respect to the primes. The role of metrics is played by symmetric matrices with integer coefficients. The role of connections (respectively curvature) attached to metrics is played by certain adelic (respectively global) objects attached to the corresponding matrices. One of the main conclusions of the theory is that the spectrum of the integers is “intrinsically curved”; the study of this curvature is then the main task of the theory. The book follows, and builds upon, a series of recent research papers. A significant part of the material has never been published before.

The Arithmetic of Elliptic Curves

The Arithmetic of Elliptic Curves PDF Author: Joseph H. Silverman
Publisher: Springer Science & Business Media
ISBN: 1475719205
Category : Mathematics
Languages : en
Pages : 414

Get Book Here

Book Description
The theory of elliptic curves is distinguished by its long history and by the diversity of the methods that have been used in its study. This book treats the arithmetic approach in its modern formulation, through the use of basic algebraic number theory and algebraic geometry. Following a brief discussion of the necessary algebro-geometric results, the book proceeds with an exposition of the geometry and the formal group of elliptic curves, elliptic curves over finite fields, the complex numbers, local fields, and global fields. Final chapters deal with integral and rational points, including Siegels theorem and explicit computations for the curve Y = X + DX, while three appendices conclude the whole: Elliptic Curves in Characteristics 2 and 3, Group Cohomology, and an overview of more advanced topics.