Author: Louis Komzsik
Publisher: CRC Press
ISBN: 1351792725
Category : Mathematics
Languages : en
Pages : 387
Book Description
This second edition includes eleven new sections based on the approximation of matrix functions, deflating the solution space and improving the accuracy of approximate solutions, iterative solution of initial value problems of systems of ordinary differential equations, and the method of trial functions for boundary value problems. The topics of th
Approximation Techniques for Engineers
Author: Louis Komzsik
Publisher: CRC Press
ISBN: 1351792725
Category : Mathematics
Languages : en
Pages : 387
Book Description
This second edition includes eleven new sections based on the approximation of matrix functions, deflating the solution space and improving the accuracy of approximate solutions, iterative solution of initial value problems of systems of ordinary differential equations, and the method of trial functions for boundary value problems. The topics of th
Publisher: CRC Press
ISBN: 1351792725
Category : Mathematics
Languages : en
Pages : 387
Book Description
This second edition includes eleven new sections based on the approximation of matrix functions, deflating the solution space and improving the accuracy of approximate solutions, iterative solution of initial value problems of systems of ordinary differential equations, and the method of trial functions for boundary value problems. The topics of th
Approximation Methods in Science and Engineering
Author: Reza N. Jazar
Publisher:
ISBN: 9781071604793
Category : Approximation theory
Languages : en
Pages :
Book Description
Approximation Methods in Engineering and Science covers fundamental and advanced topics in three areas: Dimensional Analysis, Continued Fractions, and Stability Analysis of the Mathieu Differential Equation. Throughout the book, a strong emphasis is given to concepts and methods used in everyday calculations. Dimensional analysis is a crucial need for every engineer and scientist to be able to do experiments on scaled models and use the results in real world applications. Knowing that most nonlinear equations have no analytic solution, the power series solution is assumed to be the first approach to derive an approximate solution. However, this book will show the advantages of continued fractions and provides a systematic method to develop better approximate solutions in continued fractions. It also shows the importance of determining stability chart of the Mathieu equation and reviews and compares several approximate methods for that. The book provides the energy-rate method to study the stability of parametric differential equations that generates much better approximate solutions. Covers practical model-prototype analysis and nondimensionalization of differential equations; Coverage includes approximate methods of responses of nonlinear differential equations; Discusses how to apply approximation methods to analysis, design, optimization, and control problems; Discusses how to implement approximation methods to new aspects of engineering and physics including nonlinear vibration and vehicle dynamics
Publisher:
ISBN: 9781071604793
Category : Approximation theory
Languages : en
Pages :
Book Description
Approximation Methods in Engineering and Science covers fundamental and advanced topics in three areas: Dimensional Analysis, Continued Fractions, and Stability Analysis of the Mathieu Differential Equation. Throughout the book, a strong emphasis is given to concepts and methods used in everyday calculations. Dimensional analysis is a crucial need for every engineer and scientist to be able to do experiments on scaled models and use the results in real world applications. Knowing that most nonlinear equations have no analytic solution, the power series solution is assumed to be the first approach to derive an approximate solution. However, this book will show the advantages of continued fractions and provides a systematic method to develop better approximate solutions in continued fractions. It also shows the importance of determining stability chart of the Mathieu equation and reviews and compares several approximate methods for that. The book provides the energy-rate method to study the stability of parametric differential equations that generates much better approximate solutions. Covers practical model-prototype analysis and nondimensionalization of differential equations; Coverage includes approximate methods of responses of nonlinear differential equations; Discusses how to apply approximation methods to analysis, design, optimization, and control problems; Discusses how to implement approximation methods to new aspects of engineering and physics including nonlinear vibration and vehicle dynamics
Approximate Solution Methods in Engineering Mechanics
Author: Arthur P. Boresi
Publisher: John Wiley & Sons
ISBN: 9780471402428
Category : Mathematics
Languages : en
Pages : 284
Book Description
The only complete collection of prevalent approximation methods Unlike any other resource, Approximate Solution Methods in Engineering Mechanics, Second Edition offers in-depth coverage of the most common approximate numerical methods used in the solution of physical problems, including those used in popular computer modeling packages. Descriptions of each approximation method are presented with the latest relevant research and developments, providing thorough, working knowledge of the methods and their principles. Approximation methods covered include: * Boundary element method (BEM) * Weighted residuals method * Finite difference method (FDM) * Finite element method (FEM) * Finite strip/layer/prism methods * Meshless method Approximate Solution Methods in Engineering Mechanics, Second Edition is a valuable reference guide for mechanical, aerospace, and civil engineers, as well as students in these disciplines.
Publisher: John Wiley & Sons
ISBN: 9780471402428
Category : Mathematics
Languages : en
Pages : 284
Book Description
The only complete collection of prevalent approximation methods Unlike any other resource, Approximate Solution Methods in Engineering Mechanics, Second Edition offers in-depth coverage of the most common approximate numerical methods used in the solution of physical problems, including those used in popular computer modeling packages. Descriptions of each approximation method are presented with the latest relevant research and developments, providing thorough, working knowledge of the methods and their principles. Approximation methods covered include: * Boundary element method (BEM) * Weighted residuals method * Finite difference method (FDM) * Finite element method (FEM) * Finite strip/layer/prism methods * Meshless method Approximate Solution Methods in Engineering Mechanics, Second Edition is a valuable reference guide for mechanical, aerospace, and civil engineers, as well as students in these disciplines.
Approximation Techniques for Engineers
Author: Louis Komzsik
Publisher:
ISBN: 9781351792707
Category : Electronic books
Languages : en
Pages : 387
Book Description
"This second edition includes eleven new sections based on the approximation of matrix functions, deflating the solution space and improving the accuracy of approximate solutions, iterative solution of initial value problems of systems of ordinary differential equations, and the method of trial functions for boundary value problems. The topics of the two new chapters are integral equations and mathematical optimization. The book provides alternative solutions to software tools amenable to hand computations to validate the results obtained by "black box" solvers. It also offers an insight into the mathematics behind many CAD, CAE tools of the industry. The book aims to provide a working knowledge of the various approximation techniques for engineering practice."--Provided by publisher.
Publisher:
ISBN: 9781351792707
Category : Electronic books
Languages : en
Pages : 387
Book Description
"This second edition includes eleven new sections based on the approximation of matrix functions, deflating the solution space and improving the accuracy of approximate solutions, iterative solution of initial value problems of systems of ordinary differential equations, and the method of trial functions for boundary value problems. The topics of the two new chapters are integral equations and mathematical optimization. The book provides alternative solutions to software tools amenable to hand computations to validate the results obtained by "black box" solvers. It also offers an insight into the mathematics behind many CAD, CAE tools of the industry. The book aims to provide a working knowledge of the various approximation techniques for engineering practice."--Provided by publisher.
The Best Approximation Method An Introduction
Author: Theodore V. II Hromadka
Publisher: Springer Science & Business Media
ISBN: 3642830382
Category : Technology & Engineering
Languages : en
Pages : 185
Book Description
The most commonly used numerical techniques in solving engineering and mathematical models are the Finite Element, Finite Difference, and Boundary Element Methods. As computer capabilities continue to impro':e in speed, memory size and access speed, and lower costs, the use of more accurate but computationally expensive numerical techniques will become attractive to the practicing engineer. This book presents an introduction to a new approximation method based on a generalized Fourier series expansion of a linear operator equation. Because many engineering problems such as the multi dimensional Laplace and Poisson equations, the diffusion equation, and many integral equations are linear operator equations, this new approximation technique will be of interest to practicing engineers. Because a generalized Fourier series is used to develop the approxi mator, a "best approximation" is achieved in the "least-squares" sense; hence the name, the Best Approximation Method. This book guides the reader through several mathematics topics which are pertinent to the development of the theory employed by the Best Approximation Method. Working spaces such as metric spaces and Banach spaces are explained in readable terms. Integration theory in the Lebesque sense is covered carefully. Because the generalized Fourier series utilizes Lebesque integration concepts, the integra tion theory is covered through the topic of converging sequences of functions with respect to measure, in the mean (Lp), almost uniformly IV and almost everywhere. Generalized Fourier theory and linear operator theory are treated in Chapters 3 and 4.
Publisher: Springer Science & Business Media
ISBN: 3642830382
Category : Technology & Engineering
Languages : en
Pages : 185
Book Description
The most commonly used numerical techniques in solving engineering and mathematical models are the Finite Element, Finite Difference, and Boundary Element Methods. As computer capabilities continue to impro':e in speed, memory size and access speed, and lower costs, the use of more accurate but computationally expensive numerical techniques will become attractive to the practicing engineer. This book presents an introduction to a new approximation method based on a generalized Fourier series expansion of a linear operator equation. Because many engineering problems such as the multi dimensional Laplace and Poisson equations, the diffusion equation, and many integral equations are linear operator equations, this new approximation technique will be of interest to practicing engineers. Because a generalized Fourier series is used to develop the approxi mator, a "best approximation" is achieved in the "least-squares" sense; hence the name, the Best Approximation Method. This book guides the reader through several mathematics topics which are pertinent to the development of the theory employed by the Best Approximation Method. Working spaces such as metric spaces and Banach spaces are explained in readable terms. Integration theory in the Lebesque sense is covered carefully. Because the generalized Fourier series utilizes Lebesque integration concepts, the integra tion theory is covered through the topic of converging sequences of functions with respect to measure, in the mean (Lp), almost uniformly IV and almost everywhere. Generalized Fourier theory and linear operator theory are treated in Chapters 3 and 4.
Mathematical Methods in Engineering
Author: Joseph M. Powers
Publisher: Cambridge University Press
ISBN: 1107037042
Category : Mathematics
Languages : en
Pages : 639
Book Description
Designed for engineering graduate students, this book connects basic mathematics to a variety of methods used in engineering problems.
Publisher: Cambridge University Press
ISBN: 1107037042
Category : Mathematics
Languages : en
Pages : 639
Book Description
Designed for engineering graduate students, this book connects basic mathematics to a variety of methods used in engineering problems.
Approximation Techniques for Engineers
Author: Louis Komzsik
Publisher: CRC Press
ISBN: 0849392772
Category : Technology & Engineering
Languages : en
Pages : 316
Book Description
Presenting numerous examples, algorithms, and industrial applications, Approximation Techniques for Engineers is your complete guide to the major techniques used in modern engineering practice. Whether you need approximations for discrete data of continuous functions, or you're looking for approximate solutions to engineering problems, everything you need is nestled between the covers of this book. Now you can benefit from Louis Komzsik's years of industrial experience to gain a working knowledge of a vast array of approximation techniques through this complete and self-contained resource.
Publisher: CRC Press
ISBN: 0849392772
Category : Technology & Engineering
Languages : en
Pages : 316
Book Description
Presenting numerous examples, algorithms, and industrial applications, Approximation Techniques for Engineers is your complete guide to the major techniques used in modern engineering practice. Whether you need approximations for discrete data of continuous functions, or you're looking for approximate solutions to engineering problems, everything you need is nestled between the covers of this book. Now you can benefit from Louis Komzsik's years of industrial experience to gain a working knowledge of a vast array of approximation techniques through this complete and self-contained resource.
Mathematical Techniques for Engineers and Scientists
Author: Larry C. Andrews
Publisher: SPIE Press
ISBN: 9780819445063
Category : Mathematics
Languages : en
Pages : 822
Book Description
"This self-study text for practicing engineers and scientists explains the mathematical tools that are required for advanced technological applications, but are often not covered in undergraduate school. The authors (University of Central Florida) describe special functions, matrix methods, vector operations, the transformation laws of tensors, the analytic functions of a complex variable, integral transforms, partial differential equations, probability theory, and random processes. The book could also serve as a supplemental graduate text."--Memento.
Publisher: SPIE Press
ISBN: 9780819445063
Category : Mathematics
Languages : en
Pages : 822
Book Description
"This self-study text for practicing engineers and scientists explains the mathematical tools that are required for advanced technological applications, but are often not covered in undergraduate school. The authors (University of Central Florida) describe special functions, matrix methods, vector operations, the transformation laws of tensors, the analytic functions of a complex variable, integral transforms, partial differential equations, probability theory, and random processes. The book could also serve as a supplemental graduate text."--Memento.
Approximation Theory and Methods
Author: M. J. D. Powell
Publisher: Cambridge University Press
ISBN: 9780521295147
Category : Mathematics
Languages : en
Pages : 356
Book Description
Most functions that occur in mathematics cannot be used directly in computer calculations. Instead they are approximated by manageable functions such as polynomials and piecewise polynomials. The general theory of the subject and its application to polynomial approximation are classical, but piecewise polynomials have become far more useful during the last twenty years. Thus many important theoretical properties have been found recently and many new techniques for the automatic calculation of approximations to prescribed accuracy have been developed. This book gives a thorough and coherent introduction to the theory that is the basis of current approximation methods. Professor Powell describes and analyses the main techniques of calculation supplying sufficient motivation throughout the book to make it accessible to scientists and engineers who require approximation methods for practical needs. Because the book is based on a course of lectures to third-year undergraduates in mathematics at Cambridge University, sufficient attention is given to theory to make it highly suitable as a mathematical textbook at undergraduate or postgraduate level.
Publisher: Cambridge University Press
ISBN: 9780521295147
Category : Mathematics
Languages : en
Pages : 356
Book Description
Most functions that occur in mathematics cannot be used directly in computer calculations. Instead they are approximated by manageable functions such as polynomials and piecewise polynomials. The general theory of the subject and its application to polynomial approximation are classical, but piecewise polynomials have become far more useful during the last twenty years. Thus many important theoretical properties have been found recently and many new techniques for the automatic calculation of approximations to prescribed accuracy have been developed. This book gives a thorough and coherent introduction to the theory that is the basis of current approximation methods. Professor Powell describes and analyses the main techniques of calculation supplying sufficient motivation throughout the book to make it accessible to scientists and engineers who require approximation methods for practical needs. Because the book is based on a course of lectures to third-year undergraduates in mathematics at Cambridge University, sufficient attention is given to theory to make it highly suitable as a mathematical textbook at undergraduate or postgraduate level.
Advanced Mathematical Techniques in Engineering Sciences
Author: Mangey Ram
Publisher: CRC Press
ISBN: 1351371886
Category : Mathematics
Languages : en
Pages : 402
Book Description
The goal of this book is to publish the latest mathematical techniques, research, and developments in engineering. This book includes a comprehensive range of mathematics applied in engineering areas for different tasks. Various mathematical tools, techniques, strategies, and methods in engineering applications are covered in each chapter. Mathematical techniques are the strength of engineering sciences and form the common foundation of all novel disciplines within the field. Advanced Mathematical Techniques in Engineering Sciences provides an ample range of mathematical tools and techniques applied across various fields of engineering sciences. Using this book, engineers will gain a greater understanding of the practical applications of mathematics in engineering sciences. Features Covers the mathematical techniques applied in engineering sciences Focuses on the latest research in the field of engineering applications Provides insights on an international and transnational scale Offers new studies and research in modeling and simulation
Publisher: CRC Press
ISBN: 1351371886
Category : Mathematics
Languages : en
Pages : 402
Book Description
The goal of this book is to publish the latest mathematical techniques, research, and developments in engineering. This book includes a comprehensive range of mathematics applied in engineering areas for different tasks. Various mathematical tools, techniques, strategies, and methods in engineering applications are covered in each chapter. Mathematical techniques are the strength of engineering sciences and form the common foundation of all novel disciplines within the field. Advanced Mathematical Techniques in Engineering Sciences provides an ample range of mathematical tools and techniques applied across various fields of engineering sciences. Using this book, engineers will gain a greater understanding of the practical applications of mathematics in engineering sciences. Features Covers the mathematical techniques applied in engineering sciences Focuses on the latest research in the field of engineering applications Provides insights on an international and transnational scale Offers new studies and research in modeling and simulation