Author: Richard E. Mayer
Publisher: Pearson
ISBN: 9780136117575
Category : Cognition
Languages : en
Pages : 0
Book Description
This text explores the scientific relationship between learning, instruction, and assessment with a concise and bold approach. This text explores the science of learning, including the essentials of evaluating instruction, the research findings regarding the science of learning, and the possible prescriptions of that research. Written for both preservice and inservice educators who wish to better understand how and why students learn.
Applying the Science of Learning
Author: Richard E. Mayer
Publisher: Pearson
ISBN: 9780136117575
Category : Cognition
Languages : en
Pages : 0
Book Description
This text explores the scientific relationship between learning, instruction, and assessment with a concise and bold approach. This text explores the science of learning, including the essentials of evaluating instruction, the research findings regarding the science of learning, and the possible prescriptions of that research. Written for both preservice and inservice educators who wish to better understand how and why students learn.
Publisher: Pearson
ISBN: 9780136117575
Category : Cognition
Languages : en
Pages : 0
Book Description
This text explores the scientific relationship between learning, instruction, and assessment with a concise and bold approach. This text explores the science of learning, including the essentials of evaluating instruction, the research findings regarding the science of learning, and the possible prescriptions of that research. Written for both preservice and inservice educators who wish to better understand how and why students learn.
Applying Cognitive Science to Education
Author: Frederick Reif
Publisher: MIT Press
ISBN: 0262515148
Category : Education
Languages : en
Pages : 491
Book Description
An accessible introduction to some of the cognitive issues important for thinking and learning in scientific or other complex domains (such as mathematics, physics, chemistry, engineering, or expository writing), with practical educational applications and implementation methods. Many students find it difficult to learn the kind of knowledge and thinking required by college or high school courses in mathematics, science, or other complex domains. Thus they often emerge with significant misconceptions, fragmented knowledge, and inadequate problem-solving skills. Most instructors or textbook authors approach their teaching efforts with a good knowledge of their field of expertise but little awareness of the underlying thought processes and kinds of knowledge required for learning in scientific domains. In this book, Frederick Reif presents an accessible coherent introduction to some of the cognitive issues important for thinking and learning in scientific or other complex domains (such as mathematics, science, physics, chemistry, biology, engineering, or expository writing). Reif, whose experience teaching physics at the University of California led him to explore the relevance of cognitive science to education, examines with some care the kinds of knowledge and thought processes needed for good performance; discusses the difficulties faced by students trying to deal with unfamiliar scientific domains; describes some explicit teaching methods that can help students learn the requisite knowledge and thinking skills; and indicates how such methods can be implemented by instructors or textbook authors. Writing from a practically applied rather than predominantly theoretical perspective, Reif shows how findings from recent research in cognitive science can be applied to education. He discusses cognitive issues related to the kind of knowledge and thinking skills that are needed for science or mathematics courses in high school or colleges and that are essential prerequisites for more advanced intellectual performance. In particular, he argues that a better understanding of the underlying cognitive mechanisms should help to achieve a more scientific approach to science education.
Publisher: MIT Press
ISBN: 0262515148
Category : Education
Languages : en
Pages : 491
Book Description
An accessible introduction to some of the cognitive issues important for thinking and learning in scientific or other complex domains (such as mathematics, physics, chemistry, engineering, or expository writing), with practical educational applications and implementation methods. Many students find it difficult to learn the kind of knowledge and thinking required by college or high school courses in mathematics, science, or other complex domains. Thus they often emerge with significant misconceptions, fragmented knowledge, and inadequate problem-solving skills. Most instructors or textbook authors approach their teaching efforts with a good knowledge of their field of expertise but little awareness of the underlying thought processes and kinds of knowledge required for learning in scientific domains. In this book, Frederick Reif presents an accessible coherent introduction to some of the cognitive issues important for thinking and learning in scientific or other complex domains (such as mathematics, science, physics, chemistry, biology, engineering, or expository writing). Reif, whose experience teaching physics at the University of California led him to explore the relevance of cognitive science to education, examines with some care the kinds of knowledge and thought processes needed for good performance; discusses the difficulties faced by students trying to deal with unfamiliar scientific domains; describes some explicit teaching methods that can help students learn the requisite knowledge and thinking skills; and indicates how such methods can be implemented by instructors or textbook authors. Writing from a practically applied rather than predominantly theoretical perspective, Reif shows how findings from recent research in cognitive science can be applied to education. He discusses cognitive issues related to the kind of knowledge and thinking skills that are needed for science or mathematics courses in high school or colleges and that are essential prerequisites for more advanced intellectual performance. In particular, he argues that a better understanding of the underlying cognitive mechanisms should help to achieve a more scientific approach to science education.
Small Teaching Online
Author: Flower Darby
Publisher: John Wiley & Sons
ISBN: 1119544912
Category : Education
Languages : en
Pages : 172
Book Description
Find out how to apply learning science in online classes The concept of small teaching is simple: small and strategic changes have enormous power to improve student learning. Instructors face unique and specific challenges when teaching an online course. This book offers small teaching strategies that will positively impact the online classroom. This book outlines practical and feasible applications of theoretical principles to help your online students learn. It includes current best practices around educational technologies, strategies to build community and collaboration, and minor changes you can make in your online teaching practice, small but impactful adjustments that result in significant learning gains. Explains how you can support your online students Helps your students find success in this non-traditional learning environment Covers online and blended learning Addresses specific challenges that online instructors face in higher education Small Teaching Online presents research-based teaching techniques from an online instructional design expert and the bestselling author of Small Teaching.
Publisher: John Wiley & Sons
ISBN: 1119544912
Category : Education
Languages : en
Pages : 172
Book Description
Find out how to apply learning science in online classes The concept of small teaching is simple: small and strategic changes have enormous power to improve student learning. Instructors face unique and specific challenges when teaching an online course. This book offers small teaching strategies that will positively impact the online classroom. This book outlines practical and feasible applications of theoretical principles to help your online students learn. It includes current best practices around educational technologies, strategies to build community and collaboration, and minor changes you can make in your online teaching practice, small but impactful adjustments that result in significant learning gains. Explains how you can support your online students Helps your students find success in this non-traditional learning environment Covers online and blended learning Addresses specific challenges that online instructors face in higher education Small Teaching Online presents research-based teaching techniques from an online instructional design expert and the bestselling author of Small Teaching.
Schools for Thought
Author: John T. Bruer
Publisher: MIT Press
ISBN: 9780262521963
Category : Education
Languages : en
Pages : 342
Book Description
Schools for Thought provides a straightforward, general introduction to cognitive research and illustrates its importance for educational change. If we want to improve educational opportunities and outcomes for all children, we must start applying what we know about mental functioning--how children think, learn, and remember in our schools. We must apply cognitive science in the classroom. Schools for Thought provides a straightforward, general introduction to cognitive research and illustrates its importance for educational change. Using classroom examples, Bruer shows how applying cognitive research can dramatically improve students' transitions from lower-level rote skills to advanced proficiency in reading, writing, mathematics, and science. Cognitive research, he points out, is also beginning to suggest how we might better motivate students, design more effective tools for assessing them, and improve the training of teachers. He concludes with a chapter on how effective school reform demands that we expand our understanding of teaching and learning and that we think about education in new ways. Debates and discussions about the reform of American education suffer from a lack of appreciation of the complexity of learning and from a lack of understanding about the knowledge base that is available for the improvement of educational practice. Politicians, business leaders, and even many school superintendents, principals, and teachers think that educational problems can be solved by changing school management structures or by creating a market in educational services. Bruer argues that improvement depends instead on changing student-teacher interactions. It is these changes, guided by cognitive research, that will create more effective classroom environments. A Bradford Book
Publisher: MIT Press
ISBN: 9780262521963
Category : Education
Languages : en
Pages : 342
Book Description
Schools for Thought provides a straightforward, general introduction to cognitive research and illustrates its importance for educational change. If we want to improve educational opportunities and outcomes for all children, we must start applying what we know about mental functioning--how children think, learn, and remember in our schools. We must apply cognitive science in the classroom. Schools for Thought provides a straightforward, general introduction to cognitive research and illustrates its importance for educational change. Using classroom examples, Bruer shows how applying cognitive research can dramatically improve students' transitions from lower-level rote skills to advanced proficiency in reading, writing, mathematics, and science. Cognitive research, he points out, is also beginning to suggest how we might better motivate students, design more effective tools for assessing them, and improve the training of teachers. He concludes with a chapter on how effective school reform demands that we expand our understanding of teaching and learning and that we think about education in new ways. Debates and discussions about the reform of American education suffer from a lack of appreciation of the complexity of learning and from a lack of understanding about the knowledge base that is available for the improvement of educational practice. Politicians, business leaders, and even many school superintendents, principals, and teachers think that educational problems can be solved by changing school management structures or by creating a market in educational services. Bruer argues that improvement depends instead on changing student-teacher interactions. It is these changes, guided by cognitive research, that will create more effective classroom environments. A Bradford Book
Learning Under the Lens
Author: Annemaree Carroll
Publisher: Routledge
ISBN: 0429556977
Category : Education
Languages : en
Pages : 293
Book Description
Learning Under the Lens: Applying Findings from the Science of Learning to the Classroom highlights the innovative approach being undertaken by researchers from the disparate fields of neuroscience, education and psychology working together to gain a better understanding of how we learn, and its potential to impact student learning outcomes. The book is structured in four parts: ‘Science of learning: a policy perspective’ sets the scene for this emerging field of research; ‘Self regulation of learning’ and ‘Technology and learning’ feature findings by eminent international and national researchers in the field and provides an insight into some of the innovative research illustrating the depth, breadth and multi-disciplinarity of the research; and ‘Research translation’ focuses on the scaled-up implementation of research findings in authentic learning settings, and showcases research findings which are having impact in learning environments. This fascinating book is intended as a reference tool to create awareness among researchers, policy makers, and education practitioners of the research being undertaken in the science of learning field and its potential to impact student learning outcomes.
Publisher: Routledge
ISBN: 0429556977
Category : Education
Languages : en
Pages : 293
Book Description
Learning Under the Lens: Applying Findings from the Science of Learning to the Classroom highlights the innovative approach being undertaken by researchers from the disparate fields of neuroscience, education and psychology working together to gain a better understanding of how we learn, and its potential to impact student learning outcomes. The book is structured in four parts: ‘Science of learning: a policy perspective’ sets the scene for this emerging field of research; ‘Self regulation of learning’ and ‘Technology and learning’ feature findings by eminent international and national researchers in the field and provides an insight into some of the innovative research illustrating the depth, breadth and multi-disciplinarity of the research; and ‘Research translation’ focuses on the scaled-up implementation of research findings in authentic learning settings, and showcases research findings which are having impact in learning environments. This fascinating book is intended as a reference tool to create awareness among researchers, policy makers, and education practitioners of the research being undertaken in the science of learning field and its potential to impact student learning outcomes.
Powerful Teaching
Author: Pooja K. Agarwal
Publisher: John Wiley & Sons
ISBN: 1394324901
Category : Education
Languages : en
Pages : 359
Book Description
Unleash powerful teaching and the science of learning in your classroom Powerful Teaching: Unleash the Science of Learning empowers educators to harness rigorous research on how students learn and unleash it in their classrooms. In this book, cognitive scientist Pooja K. Agarwal, Ph.D., and veteran K–12 teacher Patrice M. Bain, Ed.S., decipher cognitive science research and illustrate ways to successfully apply the science of learning in classrooms settings. This practical resource is filled with evidence-based strategies that are easily implemented in less than a minute—without additional prepping, grading, or funding! Research demonstrates that these powerful strategies raise student achievement by a letter grade or more; boost learning for diverse students, grade levels, and subject areas; and enhance students’ higher order learning and transfer of knowledge beyond the classroom. Drawing on a fifteen-year scientist-teacher collaboration, more than 100 years of research on learning, and rich experiences from educators in K–12 and higher education, the authors present highly accessible step-by-step guidance on how to transform teaching with four essential strategies: Retrieval practice, spacing, interleaving, and feedback-driven metacognition. With Powerful Teaching, you will: Develop a deep understanding of powerful teaching strategies based on the science of learning Gain insight from real-world examples of how evidence-based strategies are being implemented in a variety of academic settings Think critically about your current teaching practices from a research-based perspective Develop tools to share the science of learning with students and parents, ensuring success inside and outside the classroom Powerful Teaching: Unleash the Science of Learning is an indispensable resource for educators who want to take their instruction to the next level. Equipped with scientific knowledge and evidence-based tools, turn your teaching into powerful teaching and unleash student learning in your classroom.
Publisher: John Wiley & Sons
ISBN: 1394324901
Category : Education
Languages : en
Pages : 359
Book Description
Unleash powerful teaching and the science of learning in your classroom Powerful Teaching: Unleash the Science of Learning empowers educators to harness rigorous research on how students learn and unleash it in their classrooms. In this book, cognitive scientist Pooja K. Agarwal, Ph.D., and veteran K–12 teacher Patrice M. Bain, Ed.S., decipher cognitive science research and illustrate ways to successfully apply the science of learning in classrooms settings. This practical resource is filled with evidence-based strategies that are easily implemented in less than a minute—without additional prepping, grading, or funding! Research demonstrates that these powerful strategies raise student achievement by a letter grade or more; boost learning for diverse students, grade levels, and subject areas; and enhance students’ higher order learning and transfer of knowledge beyond the classroom. Drawing on a fifteen-year scientist-teacher collaboration, more than 100 years of research on learning, and rich experiences from educators in K–12 and higher education, the authors present highly accessible step-by-step guidance on how to transform teaching with four essential strategies: Retrieval practice, spacing, interleaving, and feedback-driven metacognition. With Powerful Teaching, you will: Develop a deep understanding of powerful teaching strategies based on the science of learning Gain insight from real-world examples of how evidence-based strategies are being implemented in a variety of academic settings Think critically about your current teaching practices from a research-based perspective Develop tools to share the science of learning with students and parents, ensuring success inside and outside the classroom Powerful Teaching: Unleash the Science of Learning is an indispensable resource for educators who want to take their instruction to the next level. Equipped with scientific knowledge and evidence-based tools, turn your teaching into powerful teaching and unleash student learning in your classroom.
How Learning Works
Author: Susan A. Ambrose
Publisher: John Wiley & Sons
ISBN: 0470617608
Category : Education
Languages : en
Pages : 336
Book Description
Praise for How Learning Works "How Learning Works is the perfect title for this excellent book. Drawing upon new research in psychology, education, and cognitive science, the authors have demystified a complex topic into clear explanations of seven powerful learning principles. Full of great ideas and practical suggestions, all based on solid research evidence, this book is essential reading for instructors at all levels who wish to improve their students' learning." —Barbara Gross Davis, assistant vice chancellor for educational development, University of California, Berkeley, and author, Tools for Teaching "This book is a must-read for every instructor, new or experienced. Although I have been teaching for almost thirty years, as I read this book I found myself resonating with many of its ideas, and I discovered new ways of thinking about teaching." —Eugenia T. Paulus, professor of chemistry, North Hennepin Community College, and 2008 U.S. Community Colleges Professor of the Year from The Carnegie Foundation for the Advancement of Teaching and the Council for Advancement and Support of Education "Thank you Carnegie Mellon for making accessible what has previously been inaccessible to those of us who are not learning scientists. Your focus on the essence of learning combined with concrete examples of the daily challenges of teaching and clear tactical strategies for faculty to consider is a welcome work. I will recommend this book to all my colleagues." —Catherine M. Casserly, senior partner, The Carnegie Foundation for the Advancement of Teaching "As you read about each of the seven basic learning principles in this book, you will find advice that is grounded in learning theory, based on research evidence, relevant to college teaching, and easy to understand. The authors have extensive knowledge and experience in applying the science of learning to college teaching, and they graciously share it with you in this organized and readable book." —From the Foreword by Richard E. Mayer, professor of psychology, University of California, Santa Barbara; coauthor, e-Learning and the Science of Instruction; and author, Multimedia Learning
Publisher: John Wiley & Sons
ISBN: 0470617608
Category : Education
Languages : en
Pages : 336
Book Description
Praise for How Learning Works "How Learning Works is the perfect title for this excellent book. Drawing upon new research in psychology, education, and cognitive science, the authors have demystified a complex topic into clear explanations of seven powerful learning principles. Full of great ideas and practical suggestions, all based on solid research evidence, this book is essential reading for instructors at all levels who wish to improve their students' learning." —Barbara Gross Davis, assistant vice chancellor for educational development, University of California, Berkeley, and author, Tools for Teaching "This book is a must-read for every instructor, new or experienced. Although I have been teaching for almost thirty years, as I read this book I found myself resonating with many of its ideas, and I discovered new ways of thinking about teaching." —Eugenia T. Paulus, professor of chemistry, North Hennepin Community College, and 2008 U.S. Community Colleges Professor of the Year from The Carnegie Foundation for the Advancement of Teaching and the Council for Advancement and Support of Education "Thank you Carnegie Mellon for making accessible what has previously been inaccessible to those of us who are not learning scientists. Your focus on the essence of learning combined with concrete examples of the daily challenges of teaching and clear tactical strategies for faculty to consider is a welcome work. I will recommend this book to all my colleagues." —Catherine M. Casserly, senior partner, The Carnegie Foundation for the Advancement of Teaching "As you read about each of the seven basic learning principles in this book, you will find advice that is grounded in learning theory, based on research evidence, relevant to college teaching, and easy to understand. The authors have extensive knowledge and experience in applying the science of learning to college teaching, and they graciously share it with you in this organized and readable book." —From the Foreword by Richard E. Mayer, professor of psychology, University of California, Santa Barbara; coauthor, e-Learning and the Science of Instruction; and author, Multimedia Learning
The Science of Reading
Author: Margaret J. Snowling
Publisher: John Wiley & Sons
ISBN: 0470757639
Category : Psychology
Languages : en
Pages : 680
Book Description
The Science of Reading: A Handbook brings together state-of-the-art reviews of reading research from leading names in the field, to create a highly authoritative, multidisciplinary overview of contemporary knowledge about reading and related skills. Provides comprehensive coverage of the subject, including theoretical approaches, reading processes, stage models of reading, cross-linguistic studies of reading, reading difficulties, the biology of reading, and reading instruction Divided into seven sections:Word Recognition Processes in Reading; Learning to Read and Spell; Reading Comprehension; Reading in Different Languages; Disorders of Reading and Spelling; Biological Bases of Reading; Teaching Reading Edited by well-respected senior figures in the field
Publisher: John Wiley & Sons
ISBN: 0470757639
Category : Psychology
Languages : en
Pages : 680
Book Description
The Science of Reading: A Handbook brings together state-of-the-art reviews of reading research from leading names in the field, to create a highly authoritative, multidisciplinary overview of contemporary knowledge about reading and related skills. Provides comprehensive coverage of the subject, including theoretical approaches, reading processes, stage models of reading, cross-linguistic studies of reading, reading difficulties, the biology of reading, and reading instruction Divided into seven sections:Word Recognition Processes in Reading; Learning to Read and Spell; Reading Comprehension; Reading in Different Languages; Disorders of Reading and Spelling; Biological Bases of Reading; Teaching Reading Edited by well-respected senior figures in the field
The Science of Learning and Development
Author: Pamela Cantor
Publisher: Routledge
ISBN: 100039977X
Category : Education
Languages : en
Pages : 245
Book Description
This essential text unpacks major transformations in the study of learning and human development and provides evidence for how science can inform innovation in the design of settings, policies, practice, and research to enhance the life path, opportunity and prosperity of every child. The ideas presented provide researchers and educators with a rationale for focusing on the specific pathways and developmental patterns that may lead a specific child, with a specific family, school, and community, to prosper in school and in life. Expanding key published articles and expert commentary, the book explores a profound evolution in thinking that integrates findings from psychology with biology through sociology, education, law, and history with an emphasis on institutionalized inequities and disparate outcomes and how to address them. It points toward possible solutions through an understanding of and addressing the dynamic relations between a child and the contexts within which he or she lives, offering all researchers of human development and education a new way to understand and promote healthy development and learning for diverse, specific youth regardless of race, socioeconomic status, or history of adversity, challenge, or trauma. The book brings together scholars and practitioners from the biological/medical sciences, the social and behavioral sciences, educational science, and fields of law and social and educational policy. It provides an invaluable and unique resource for understanding the bases and status of the new science, and presents a roadmap for progress that will frame progress for at least the next decade and perhaps beyond.
Publisher: Routledge
ISBN: 100039977X
Category : Education
Languages : en
Pages : 245
Book Description
This essential text unpacks major transformations in the study of learning and human development and provides evidence for how science can inform innovation in the design of settings, policies, practice, and research to enhance the life path, opportunity and prosperity of every child. The ideas presented provide researchers and educators with a rationale for focusing on the specific pathways and developmental patterns that may lead a specific child, with a specific family, school, and community, to prosper in school and in life. Expanding key published articles and expert commentary, the book explores a profound evolution in thinking that integrates findings from psychology with biology through sociology, education, law, and history with an emphasis on institutionalized inequities and disparate outcomes and how to address them. It points toward possible solutions through an understanding of and addressing the dynamic relations between a child and the contexts within which he or she lives, offering all researchers of human development and education a new way to understand and promote healthy development and learning for diverse, specific youth regardless of race, socioeconomic status, or history of adversity, challenge, or trauma. The book brings together scholars and practitioners from the biological/medical sciences, the social and behavioral sciences, educational science, and fields of law and social and educational policy. It provides an invaluable and unique resource for understanding the bases and status of the new science, and presents a roadmap for progress that will frame progress for at least the next decade and perhaps beyond.
Visible Learning for Science, Grades K-12
Author: John Almarode
Publisher: Corwin Press
ISBN: 1506394191
Category : Education
Languages : en
Pages : 131
Book Description
In the best science classrooms, teachers see learning through the eyes of their students, and students view themselves as explorers. But with so many instructional approaches to choose from—inquiry, laboratory, project-based learning, discovery learning—which is most effective for student success? In Visible Learning for Science, the authors reveal that it’s not which strategy, but when, and plot a vital K-12 framework for choosing the right approach at the right time, depending on where students are within the three phases of learning: surface, deep, and transfer. Synthesizing state-of-the-art science instruction and assessment with over fifteen years of John Hattie’s cornerstone educational research, this framework for maximum learning spans the range of topics in the life and physical sciences. Employing classroom examples from all grade levels, the authors empower teachers to plan, develop, and implement high-impact instruction for each phase of the learning cycle: Surface learning: when, through precise approaches, students explore science concepts and skills that give way to a deeper exploration of scientific inquiry. Deep learning: when students engage with data and evidence to uncover relationships between concepts—students think metacognitively, and use knowledge to plan, investigate, and articulate generalizations about scientific connections. Transfer learning: when students apply knowledge of scientific principles, processes, and relationships to novel contexts, and are able to discern and innovate to solve complex problems. Visible Learning for Science opens the door to maximum-impact science teaching, so that students demonstrate more than a year’s worth of learning for a year spent in school.
Publisher: Corwin Press
ISBN: 1506394191
Category : Education
Languages : en
Pages : 131
Book Description
In the best science classrooms, teachers see learning through the eyes of their students, and students view themselves as explorers. But with so many instructional approaches to choose from—inquiry, laboratory, project-based learning, discovery learning—which is most effective for student success? In Visible Learning for Science, the authors reveal that it’s not which strategy, but when, and plot a vital K-12 framework for choosing the right approach at the right time, depending on where students are within the three phases of learning: surface, deep, and transfer. Synthesizing state-of-the-art science instruction and assessment with over fifteen years of John Hattie’s cornerstone educational research, this framework for maximum learning spans the range of topics in the life and physical sciences. Employing classroom examples from all grade levels, the authors empower teachers to plan, develop, and implement high-impact instruction for each phase of the learning cycle: Surface learning: when, through precise approaches, students explore science concepts and skills that give way to a deeper exploration of scientific inquiry. Deep learning: when students engage with data and evidence to uncover relationships between concepts—students think metacognitively, and use knowledge to plan, investigate, and articulate generalizations about scientific connections. Transfer learning: when students apply knowledge of scientific principles, processes, and relationships to novel contexts, and are able to discern and innovate to solve complex problems. Visible Learning for Science opens the door to maximum-impact science teaching, so that students demonstrate more than a year’s worth of learning for a year spent in school.