Applying Anomaly Detection to Search for New Physics with the ATLAS Detector at the Large Hadron Collider

Applying Anomaly Detection to Search for New Physics with the ATLAS Detector at the Large Hadron Collider PDF Author: Alan Kahn
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
A search for a heavy new particle Y decaying to a Standard Model Higgs boson H and another new particle X is presented. The search is performed using 139 fb−1 of p−p collision data at √s = 13 TeV recorded by the ATLAS detector. The H boson is identified through its decays to bb, with the only assumption applied to X being that it decays hadronically. The X is identified through a novel anomaly detection method via the use of a Variational Recurrent Neural Network trained directly on data collected by the ATLAS detector. This effort marks the first application of a fully unsupervised machine learning method to an ATLAS analysis. An additional benchmark based on interpreting the Y → XH process in the context of a heavy vector triplet model in which the X decays to two quarks defines an additional signal region in which upper limits on the HVT process cross section are reported at 95% confidence level.

Applying Anomaly Detection to Search for New Physics with the ATLAS Detector at the Large Hadron Collider

Applying Anomaly Detection to Search for New Physics with the ATLAS Detector at the Large Hadron Collider PDF Author: Alan Kahn
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
A search for a heavy new particle Y decaying to a Standard Model Higgs boson H and another new particle X is presented. The search is performed using 139 fb−1 of p−p collision data at √s = 13 TeV recorded by the ATLAS detector. The H boson is identified through its decays to bb, with the only assumption applied to X being that it decays hadronically. The X is identified through a novel anomaly detection method via the use of a Variational Recurrent Neural Network trained directly on data collected by the ATLAS detector. This effort marks the first application of a fully unsupervised machine learning method to an ATLAS analysis. An additional benchmark based on interpreting the Y → XH process in the context of a heavy vector triplet model in which the X decays to two quarks defines an additional signal region in which upper limits on the HVT process cross section are reported at 95% confidence level.

Model Independent Searches for New Physics Using Machine Learning at the ATLAS Experiment

Model Independent Searches for New Physics Using Machine Learning at the ATLAS Experiment PDF Author: Fabricio Jimenez
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
We address the problem of model-independent searches for New Physics (NP), at the Large Hadron Collider (LHC) using the ATLAS detector. Particular attention is paid to the development and testing of novel Machine Learning techniques for that purpose. The present work presents three main results. Firstly, we put in place a system for automatic generic signature monitoring within TADA, a software tool from ATLAS. We explored over 30 signatures in the data taking period of 2017 and no particular discrepancy was observed with respect to the Standard Model processes simulations. Secondly, we propose a collective anomaly detection method for model-independent searches for NP at the LHC. We propose the parametric approach that uses a semi-supervised learning algorithm. This approach uses penalized likelihood and is able to simultaneously perform appropriate variable selection and detect possible collective anomalous behavior in data with respect to a given background sample. Thirdly, we present preliminary studies on modeling background and detecting generic signals in invariant mass spectra using Gaussian processes (GPs) with no mean prior information. Two methods were tested in two datasets: a two-step procedure in a dataset taken from Standard Model simulations used for ATLAS General Search, in the channel containing two jets in the final state, and a three-step procedure from a simulated dataset for signal (Z′) and background (Standard Model) in the search for resonances in the top pair invariant mass spectrum case. Our study is a first step towards a method that takes advantage of GPs as a modeling tool that can be applied to several signatures in a more model independent setup.

A Search for Displaced Leptons in the ATLAS Detector

A Search for Displaced Leptons in the ATLAS Detector PDF Author: Lesya Horyn
Publisher: Springer Nature
ISBN: 3030916723
Category : Science
Languages : en
Pages : 146

Get Book Here

Book Description
This thesis presents a search for long-lived particles decaying into displaced electrons and/or muons with large impact parameters. This signature provides unique sensitivity to the production of theoretical lepton-partners, sleptons. These particles are a feature of supersymmetric theories, which seek to address unanswered questions in nature. The signature searched for in this thesis is difficult to identify, and in fact, this is the first time it has been probed at the Large Hadron Collider (LHC). It covers a long-standing gap in coverage of possible new physics signatures. This thesis describes the special reconstruction and identification algorithms used to select leptons with large impact parameters and the details of the background estimation. The results are consistent with background, so limits on slepton masses and lifetimes in this model are calculated at 95% CL, drastically improving on the previous best limits from the Large Electron Positron Collider (LEP).

Search for Dark Matter with the ATLAS Detector

Search for Dark Matter with the ATLAS Detector PDF Author: Johanna Gramling
Publisher: Springer
ISBN: 3319950169
Category : Science
Languages : en
Pages : 290

Get Book Here

Book Description
This book discusses searches for Dark Matter at the CERN’s LHC, the world’s most powerful accelerator. It introduces the relevant theoretical framework and includes an in-depth discussion of the Effective Field Theory approach to Dark Matter production and its validity, as well as an overview of the formalism of Simplified Dark Matter models. Despite overwhelming astrophysical evidence for Dark Matter and numerous experimental efforts to detect it, the nature of Dark Matter still remains a mystery and has become one of the hottest research topics in fundamental physics. Two searches for Dark Matter are presented, performed on data collected with the ATLAS experiment. They analyze missing-energy final states with a jet or with top quarks. The analyses are explained in detail, and the outcomes and their interpretations are discussed, also in view of the precedent analysis of theoretical approaches. Given its depth of coverage, the book represents an excellent reference guide for all physicists interested in understanding the theoretical and experimental considerations relevant to Dark Matter searches at the LHC.

Search for Dark Matter Produced in Association with a Higgs Boson Decaying to Two Bottom Quarks at ATLAS

Search for Dark Matter Produced in Association with a Higgs Boson Decaying to Two Bottom Quarks at ATLAS PDF Author: Yangyang Cheng
Publisher: Springer
ISBN: 331944218X
Category : Science
Languages : en
Pages : 183

Get Book Here

Book Description
This thesis reports on the search for dark matter in data taken with the ATLAS detector at CERN’s Large Hadron Collider (LHC). The identification of dark matter and the determination of its properties are among the highest priorities in elementary particle physics and cosmology. The most likely candidate, a weakly interacting massive particle, could be produced in the high energy proton-proton collisions at the LHC. The analysis presented here is unique in looking for dark matter produced together with a Higgs boson that decays into its dominant decay mode, a pair of b quarks. If dark matter were seen in this mode, we would learn directly about the production mechanism because of the presence of the Higgs boson. This thesis develops the search technique and presents the most stringent production limit to date.

Searching for Dark Matter with the ATLAS Detector

Searching for Dark Matter with the ATLAS Detector PDF Author: Steven Schramm
Publisher: Springer
ISBN: 3319444530
Category : Science
Languages : en
Pages : 341

Get Book Here

Book Description
This thesis describes the search for Dark Matter at the LHC in the mono-jet plus missing transverse momentum final state, using the full dataset recorded in 2012 by the ATLAS Experiment. It is the first time that the number of jets is not explicitly restricted to one or two, thus increasing the sensitivity to new signals. Instead, a balance between the most energetic jet and the missing transverse momentum is required, thus selecting mono-jet-like final states. Collider searches for Dark Matter have typically used signal models employing effective field theories (EFTs), even when comparing to results from direct and indirect detection experiments, where the difference in energy scale renders many such comparisons invalid. The thesis features the first robust and comprehensive treatment of the validity of EFTs in collider searches, and provides a means by which the different classifications of Dark Matter experiments can be compared on a sound and fair basis.

Search for Dark Matter with ATLAS

Search for Dark Matter with ATLAS PDF Author: Ruth Pöttgen
Publisher: Springer
ISBN: 3319410458
Category : Science
Languages : en
Pages : 325

Get Book Here

Book Description
This thesis describes in detail a search for weakly interacting massive particles as possible dark matter candidates, making use of so-called mono-jet events. It includes a detailed description of the run-1 system, important operational challenges, and the upgrade for run-2. The nature of dark matter, which accounts for roughly 25% of the energy-matter content of the universe, is one of the biggest open questions in fundamental science. The analysis is based on the full set of proton-proton collisions collected by the ATLAS experiment at the Large Hadron Collider at √s = 8 TeV. Special attention is given to the experimental challenges and analysis techniques, as well as the overall scientific context beyond particle physics. The results complement those of non-collider experiments and yield some of the strongest exclusion bounds on parameters of dark matter models by the end of the Large Hadron Collider run-1. Details of the upgrade of the ATLAS Central Trigger for run-2 are also included.

Measuring the Standard Model and Searching for New Physics with Jet Substructure Using the ATLAS Detector

Measuring the Standard Model and Searching for New Physics with Jet Substructure Using the ATLAS Detector PDF Author: Maximilian Swiatlowski
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Collisions at the Large Hadron Collider have offered an unprecedented window into some of the highest energy scales ever observed in experiments. Understanding these collisions, especially those that produce particles charged under quantum chromodynamics (QCD), requires a deep understanding of jets: the collimated sprays of particles produced by the parton shower and hadronization processes which emerge from the asymptotic freedom of QCD. Recent theoretical advances and the unprecedented capabilities of the ATLAS detector have enabled a new class of jet physics measurements based on the internal structure of jets, referred to as jet substructure. Three new types of measurements relying on jet substructure are presented. The first is a set of measurements sensitive which can discriminate between jets initiated by quarks and gluons. Separation is possible by studying variables sensitive to the magnitude of the color charge. Several such variables are measured, and a data-driven technique is used to construct a tagger, the first of its kind at a hadron collider, which can improve the sensitivity of searches for new physics in hadronic final states. A second measurement studies the color connections of jets in top-antitop events using an observable called the jet pull angle: sensitivity to the color representation of particles decaying to dijet pairs at a hadron collider is demonstrated for the first time. A final analysis searches for R-parity violating supersymmetry (SUSY) in all hadronic final states. These classes of models remove the characteristic missing energy signature which existing SUSY searches rely on, and require new discrimination techniques. Jet substructure provides a powerful handle to analyze these very high multiplicity states using a variable called the total jet mass. No signal is observed over the Standard Model (SM) prediction, and new limits are set on these previously unexplored models. The techniques of jet substructure lie at the hearts of all of these analyses, enabling both new measurements of SM phenomena and entirely new searches for physics beyond the SM.

General Model Independent Searches for Physics Beyond the Standard Model

General Model Independent Searches for Physics Beyond the Standard Model PDF Author: Saranya Samik Ghosh
Publisher: Springer Nature
ISBN: 3030537838
Category : Science
Languages : en
Pages : 77

Get Book Here

Book Description
This primer describes the general model independent searches for new physics phenomena beyond the Standard Model of particle physics. First, the motivation for performing general model independent experimental searches for new physics is presented by giving an overview of the current theoretical understanding of particle physics in terms of the Standard Model of particle physics and its shortcomings. Then, the concept and features of general model independent search for new physics at collider based experiments is explained. This is followed by an overview of such searches performed in past high energy physics experiments and the current status of such searches, particularly in the context of the experiments at the LHC. Finally, the future prospects of such general model independent searches, with possible improvements using new tools such as machine learning techniques, is discussed.

The Performance of the ATLAS Detector

The Performance of the ATLAS Detector PDF Author: ATLAS Collaboration
Publisher: Springer
ISBN: 9783642221170
Category : Science
Languages : en
Pages : 274

Get Book Here

Book Description
The ATLAS detector at the CERN Large Hadron Collider is an apparatus of unprecedented complexity, designed to probe physics in proton-proton collisions at centre-of-mass energies up to 14 TeV. It was installed in its underground cavern at the LHC during the period 2004 to 2008. Testing of individual subsystems began immediately with calibration systems and cosmic rays, and by 2008 full detector systems could be operated with the planned infrastructure, readout, and monitoring systems. Several commissioning runs of the full detector were organized in 2008 and 2009. During these runs the detector was operated continuously for several months with its readout triggered by cosmic ray muons. At the same time, regular calibrations of individual detector systems were made. In the course of these runs, signals from tens of millions of cosmic ray events were recorded. These commissioning runs continued until the first beam-beam collisions in late 2009. This volume is a collection of seven performance papers based on data collected during this commissioning period. Five papers deal with the response of individual detector systems. One paper describes the performance of the simulation infrastructure used to model the detector’s response to both cosmic rays and to the later beam-beam collisions. The final paper describes measurements drawing on the integrated performance of several detector systems. It studies lepton identification, the response to low energy electrons, muon energy loss in the calorimeters, missing ET effects, and the combined performance for muons when both the muon spectrometer and the inner tracking detector are used. These papers summarize the studies of the ATLAS detector performance and readiness prior to the start of colliding beam data. They are reprinted from The European Physical Journal C where they were published between summer 2010 and spring 2011.