Author: Michael H Kutner, PH.D.
Publisher: McGraw-Hill Europe
ISBN: 9780071115193
Category :
Languages : en
Pages : 701
Book Description
Applied Linear Regression Models Revised Edition with Student CD-ROM
Author: Michael H Kutner, PH.D.
Publisher: McGraw-Hill Europe
ISBN: 9780071115193
Category :
Languages : en
Pages : 701
Book Description
Publisher: McGraw-Hill Europe
ISBN: 9780071115193
Category :
Languages : en
Pages : 701
Book Description
Linear Models in Statistics
Author: Alvin C. Rencher
Publisher: John Wiley & Sons
ISBN: 0470192607
Category : Mathematics
Languages : en
Pages : 690
Book Description
The essential introduction to the theory and application of linear models—now in a valuable new edition Since most advanced statistical tools are generalizations of the linear model, it is neces-sary to first master the linear model in order to move forward to more advanced concepts. The linear model remains the main tool of the applied statistician and is central to the training of any statistician regardless of whether the focus is applied or theoretical. This completely revised and updated new edition successfully develops the basic theory of linear models for regression, analysis of variance, analysis of covariance, and linear mixed models. Recent advances in the methodology related to linear mixed models, generalized linear models, and the Bayesian linear model are also addressed. Linear Models in Statistics, Second Edition includes full coverage of advanced topics, such as mixed and generalized linear models, Bayesian linear models, two-way models with empty cells, geometry of least squares, vector-matrix calculus, simultaneous inference, and logistic and nonlinear regression. Algebraic, geometrical, frequentist, and Bayesian approaches to both the inference of linear models and the analysis of variance are also illustrated. Through the expansion of relevant material and the inclusion of the latest technological developments in the field, this book provides readers with the theoretical foundation to correctly interpret computer software output as well as effectively use, customize, and understand linear models. This modern Second Edition features: New chapters on Bayesian linear models as well as random and mixed linear models Expanded discussion of two-way models with empty cells Additional sections on the geometry of least squares Updated coverage of simultaneous inference The book is complemented with easy-to-read proofs, real data sets, and an extensive bibliography. A thorough review of the requisite matrix algebra has been addedfor transitional purposes, and numerous theoretical and applied problems have been incorporated with selected answers provided at the end of the book. A related Web site includes additional data sets and SAS® code for all numerical examples. Linear Model in Statistics, Second Edition is a must-have book for courses in statistics, biostatistics, and mathematics at the upper-undergraduate and graduate levels. It is also an invaluable reference for researchers who need to gain a better understanding of regression and analysis of variance.
Publisher: John Wiley & Sons
ISBN: 0470192607
Category : Mathematics
Languages : en
Pages : 690
Book Description
The essential introduction to the theory and application of linear models—now in a valuable new edition Since most advanced statistical tools are generalizations of the linear model, it is neces-sary to first master the linear model in order to move forward to more advanced concepts. The linear model remains the main tool of the applied statistician and is central to the training of any statistician regardless of whether the focus is applied or theoretical. This completely revised and updated new edition successfully develops the basic theory of linear models for regression, analysis of variance, analysis of covariance, and linear mixed models. Recent advances in the methodology related to linear mixed models, generalized linear models, and the Bayesian linear model are also addressed. Linear Models in Statistics, Second Edition includes full coverage of advanced topics, such as mixed and generalized linear models, Bayesian linear models, two-way models with empty cells, geometry of least squares, vector-matrix calculus, simultaneous inference, and logistic and nonlinear regression. Algebraic, geometrical, frequentist, and Bayesian approaches to both the inference of linear models and the analysis of variance are also illustrated. Through the expansion of relevant material and the inclusion of the latest technological developments in the field, this book provides readers with the theoretical foundation to correctly interpret computer software output as well as effectively use, customize, and understand linear models. This modern Second Edition features: New chapters on Bayesian linear models as well as random and mixed linear models Expanded discussion of two-way models with empty cells Additional sections on the geometry of least squares Updated coverage of simultaneous inference The book is complemented with easy-to-read proofs, real data sets, and an extensive bibliography. A thorough review of the requisite matrix algebra has been addedfor transitional purposes, and numerous theoretical and applied problems have been incorporated with selected answers provided at the end of the book. A related Web site includes additional data sets and SAS® code for all numerical examples. Linear Model in Statistics, Second Edition is a must-have book for courses in statistics, biostatistics, and mathematics at the upper-undergraduate and graduate levels. It is also an invaluable reference for researchers who need to gain a better understanding of regression and analysis of variance.
Restoring Diversity
Author: Donald A. Falk
Publisher:
ISBN:
Category : Nature
Languages : en
Pages : 536
Book Description
The reintroduction of rare and endangered species to their natural habitat is one of emerging tools of ecosystem management. Yet despite hundreds of ongoing projects, the biological underpinnings of such activity are poorly understood, and important questions remain. Restoring Diversity provides biological, policy, and regulatory foundations for successful restoration of rare plants. Topics considered include the strategic and legal context for rare plant restoration, the biology of restoration, use (and misuse) of mitigation in rare plant conservation, and case studies from across the United States. Restoring Diversity presents model guidelines for the reintroduction of endangered plants - guidelines that incorporate ideas contained in the book's chapters with the wide-ranging experience of experts in the field. It is a pathbreaking work that not only unifies concepts in the field of restoration, but also fills significant technical and policy gaps and provides operational tools for successful restorations.
Publisher:
ISBN:
Category : Nature
Languages : en
Pages : 536
Book Description
The reintroduction of rare and endangered species to their natural habitat is one of emerging tools of ecosystem management. Yet despite hundreds of ongoing projects, the biological underpinnings of such activity are poorly understood, and important questions remain. Restoring Diversity provides biological, policy, and regulatory foundations for successful restoration of rare plants. Topics considered include the strategic and legal context for rare plant restoration, the biology of restoration, use (and misuse) of mitigation in rare plant conservation, and case studies from across the United States. Restoring Diversity presents model guidelines for the reintroduction of endangered plants - guidelines that incorporate ideas contained in the book's chapters with the wide-ranging experience of experts in the field. It is a pathbreaking work that not only unifies concepts in the field of restoration, but also fills significant technical and policy gaps and provides operational tools for successful restorations.
Applied Linear Statistical Models
Author: Michael H. Kutner
Publisher: McGraw-Hill/Irwin
ISBN: 9780072386882
Category : Mathematics
Languages : en
Pages : 1396
Book Description
Linear regression with one predictor variable; Inferences in regression and correlation analysis; Diagnosticis and remedial measures; Simultaneous inferences and other topics in regression analysis; Matrix approach to simple linear regression analysis; Multiple linear regression; Nonlinear regression; Design and analysis of single-factor studies; Multi-factor studies; Specialized study designs.
Publisher: McGraw-Hill/Irwin
ISBN: 9780072386882
Category : Mathematics
Languages : en
Pages : 1396
Book Description
Linear regression with one predictor variable; Inferences in regression and correlation analysis; Diagnosticis and remedial measures; Simultaneous inferences and other topics in regression analysis; Matrix approach to simple linear regression analysis; Multiple linear regression; Nonlinear regression; Design and analysis of single-factor studies; Multi-factor studies; Specialized study designs.
Introduction to Regression Modeling
Author: Bovas Abraham
Publisher: Duxbury Press
ISBN: 9780534420758
Category : Mathematics
Languages : en
Pages : 433
Book Description
Looking for an easy-to-understand text to guide you through the tough topic of regression modeling? INTRODUCTION TO REGRESSION MODELING (WITH CD-ROM) offers a blend of theory and regression applications and will give you the practice you need to tackle this subject through exercises, case studies. and projects that have you identify a problem of interest and collect data relevant to the problem's solution. The book goes beyond linear regression by covering nonlinear models, regression models with time series errors, and logistic and Poisson regression models.
Publisher: Duxbury Press
ISBN: 9780534420758
Category : Mathematics
Languages : en
Pages : 433
Book Description
Looking for an easy-to-understand text to guide you through the tough topic of regression modeling? INTRODUCTION TO REGRESSION MODELING (WITH CD-ROM) offers a blend of theory and regression applications and will give you the practice you need to tackle this subject through exercises, case studies. and projects that have you identify a problem of interest and collect data relevant to the problem's solution. The book goes beyond linear regression by covering nonlinear models, regression models with time series errors, and logistic and Poisson regression models.
Student Solutions Manual for Applied Linear Regression Models
Author: Michael Kutner
Publisher: McGraw-Hill Education
ISBN: 9780072918397
Category : Education
Languages : en
Pages :
Book Description
Publisher: McGraw-Hill Education
ISBN: 9780072918397
Category : Education
Languages : en
Pages :
Book Description
MP Applied Linear Regression Models-Revised Edition with Student CD
Author: John Neter
Publisher: McGraw-Hill Education
ISBN: 9780073014661
Category : Business & Economics
Languages : en
Pages : 701
Book Description
Kutner, Nachtsheim, Neter, Wasserman, Applied Linear Regression Models, 4/e (ALRM4e) is the long established leading authoritative text and reference on regression (previously Neter was lead author.) For students in most any discipline where statistical analysis or interpretation is used, ALRM has served as the industry standard. The text includes brief introductory and review material, and then proceeds through regression and modeling. All topics are presented in a precise and clear style supported with solved examples, numbered formulae, graphic illustrations, and "Comments" to provide depth and statistical accuracy and precision. Applications used within the text and the hallmark problems, exercises, and projects are drawn from virtually all disciplines and fields providing motivation for students in any discipline. ALRM 4e provides an increased use of computing and graphical analysis throughout, without sacrificing concepts or rigor.
Publisher: McGraw-Hill Education
ISBN: 9780073014661
Category : Business & Economics
Languages : en
Pages : 701
Book Description
Kutner, Nachtsheim, Neter, Wasserman, Applied Linear Regression Models, 4/e (ALRM4e) is the long established leading authoritative text and reference on regression (previously Neter was lead author.) For students in most any discipline where statistical analysis or interpretation is used, ALRM has served as the industry standard. The text includes brief introductory and review material, and then proceeds through regression and modeling. All topics are presented in a precise and clear style supported with solved examples, numbered formulae, graphic illustrations, and "Comments" to provide depth and statistical accuracy and precision. Applications used within the text and the hallmark problems, exercises, and projects are drawn from virtually all disciplines and fields providing motivation for students in any discipline. ALRM 4e provides an increased use of computing and graphical analysis throughout, without sacrificing concepts or rigor.
Interpretable Machine Learning
Author: Christoph Molnar
Publisher: Lulu.com
ISBN: 0244768528
Category : Computers
Languages : en
Pages : 320
Book Description
This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.
Publisher: Lulu.com
ISBN: 0244768528
Category : Computers
Languages : en
Pages : 320
Book Description
This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.
Mathematica Laboratories for Mathematical Statistics
Author: Jenny A. Baglivo
Publisher: SIAM
ISBN: 0898715660
Category : Mathematics
Languages : en
Pages : 273
Book Description
CD-ROM contains text, data, computations, and graphics.
Publisher: SIAM
ISBN: 0898715660
Category : Mathematics
Languages : en
Pages : 273
Book Description
CD-ROM contains text, data, computations, and graphics.
Introduction to Applied Linear Algebra
Author: Stephen Boyd
Publisher: Cambridge University Press
ISBN: 1316518965
Category : Business & Economics
Languages : en
Pages : 477
Book Description
A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.
Publisher: Cambridge University Press
ISBN: 1316518965
Category : Business & Economics
Languages : en
Pages : 477
Book Description
A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.