Author: Andrew Gelman
Publisher: John Wiley & Sons
ISBN: 9780470090435
Category : Mathematics
Languages : en
Pages : 448
Book Description
This book brings together a collection of articles on statistical methods relating to missing data analysis, including multiple imputation, propensity scores, instrumental variables, and Bayesian inference. Covering new research topics and real-world examples which do not feature in many standard texts. The book is dedicated to Professor Don Rubin (Harvard). Don Rubin has made fundamental contributions to the study of missing data. Key features of the book include: Comprehensive coverage of an imporant area for both research and applications. Adopts a pragmatic approach to describing a wide range of intermediate and advanced statistical techniques. Covers key topics such as multiple imputation, propensity scores, instrumental variables and Bayesian inference. Includes a number of applications from the social and health sciences. Edited and authored by highly respected researchers in the area.
Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives
Author: Andrew Gelman
Publisher: John Wiley & Sons
ISBN: 9780470090435
Category : Mathematics
Languages : en
Pages : 448
Book Description
This book brings together a collection of articles on statistical methods relating to missing data analysis, including multiple imputation, propensity scores, instrumental variables, and Bayesian inference. Covering new research topics and real-world examples which do not feature in many standard texts. The book is dedicated to Professor Don Rubin (Harvard). Don Rubin has made fundamental contributions to the study of missing data. Key features of the book include: Comprehensive coverage of an imporant area for both research and applications. Adopts a pragmatic approach to describing a wide range of intermediate and advanced statistical techniques. Covers key topics such as multiple imputation, propensity scores, instrumental variables and Bayesian inference. Includes a number of applications from the social and health sciences. Edited and authored by highly respected researchers in the area.
Publisher: John Wiley & Sons
ISBN: 9780470090435
Category : Mathematics
Languages : en
Pages : 448
Book Description
This book brings together a collection of articles on statistical methods relating to missing data analysis, including multiple imputation, propensity scores, instrumental variables, and Bayesian inference. Covering new research topics and real-world examples which do not feature in many standard texts. The book is dedicated to Professor Don Rubin (Harvard). Don Rubin has made fundamental contributions to the study of missing data. Key features of the book include: Comprehensive coverage of an imporant area for both research and applications. Adopts a pragmatic approach to describing a wide range of intermediate and advanced statistical techniques. Covers key topics such as multiple imputation, propensity scores, instrumental variables and Bayesian inference. Includes a number of applications from the social and health sciences. Edited and authored by highly respected researchers in the area.
Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives
Author: Andrew Gelman
Publisher: John Wiley & Sons
ISBN: 0470090448
Category : Mathematics
Languages : en
Pages : 436
Book Description
This book brings together a collection of articles on statistical methods relating to missing data analysis, including multiple imputation, propensity scores, instrumental variables, and Bayesian inference. Covering new research topics and real-world examples which do not feature in many standard texts. The book is dedicated to Professor Don Rubin (Harvard). Don Rubin has made fundamental contributions to the study of missing data. Key features of the book include: Comprehensive coverage of an imporant area for both research and applications. Adopts a pragmatic approach to describing a wide range of intermediate and advanced statistical techniques. Covers key topics such as multiple imputation, propensity scores, instrumental variables and Bayesian inference. Includes a number of applications from the social and health sciences. Edited and authored by highly respected researchers in the area.
Publisher: John Wiley & Sons
ISBN: 0470090448
Category : Mathematics
Languages : en
Pages : 436
Book Description
This book brings together a collection of articles on statistical methods relating to missing data analysis, including multiple imputation, propensity scores, instrumental variables, and Bayesian inference. Covering new research topics and real-world examples which do not feature in many standard texts. The book is dedicated to Professor Don Rubin (Harvard). Don Rubin has made fundamental contributions to the study of missing data. Key features of the book include: Comprehensive coverage of an imporant area for both research and applications. Adopts a pragmatic approach to describing a wide range of intermediate and advanced statistical techniques. Covers key topics such as multiple imputation, propensity scores, instrumental variables and Bayesian inference. Includes a number of applications from the social and health sciences. Edited and authored by highly respected researchers in the area.
Applied Bayesian Modeling and Causal Inference from Incomplete-data Perspectives
Author: Andrew Gelman
Publisher:
ISBN:
Category : Bayesian statistical decision theory
Languages : en
Pages : 0
Book Description
Publisher:
ISBN:
Category : Bayesian statistical decision theory
Languages : en
Pages : 0
Book Description
Applied Bayesian Modelling
Author: Peter Congdon
Publisher: John Wiley & Sons
ISBN: 1118895053
Category : Mathematics
Languages : en
Pages : 464
Book Description
This book provides an accessible approach to Bayesian computing and data analysis, with an emphasis on the interpretation of real data sets. Following in the tradition of the successful first edition, this book aims to make a wide range of statistical modeling applications accessible using tested code that can be readily adapted to the reader's own applications. The second edition has been thoroughly reworked and updated to take account of advances in the field. A new set of worked examples is included. The novel aspect of the first edition was the coverage of statistical modeling using WinBUGS and OPENBUGS. This feature continues in the new edition along with examples using R to broaden appeal and for completeness of coverage.
Publisher: John Wiley & Sons
ISBN: 1118895053
Category : Mathematics
Languages : en
Pages : 464
Book Description
This book provides an accessible approach to Bayesian computing and data analysis, with an emphasis on the interpretation of real data sets. Following in the tradition of the successful first edition, this book aims to make a wide range of statistical modeling applications accessible using tested code that can be readily adapted to the reader's own applications. The second edition has been thoroughly reworked and updated to take account of advances in the field. A new set of worked examples is included. The novel aspect of the first edition was the coverage of statistical modeling using WinBUGS and OPENBUGS. This feature continues in the new edition along with examples using R to broaden appeal and for completeness of coverage.
Bayesian Data Analysis, Third Edition
Author: Andrew Gelman
Publisher: CRC Press
ISBN: 1439840954
Category : Mathematics
Languages : en
Pages : 677
Book Description
Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.
Publisher: CRC Press
ISBN: 1439840954
Category : Mathematics
Languages : en
Pages : 677
Book Description
Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.
Missing Data in Longitudinal Studies
Author: Michael J. Daniels
Publisher: CRC Press
ISBN: 1420011189
Category : Mathematics
Languages : en
Pages : 324
Book Description
Drawing from the authors' own work and from the most recent developments in the field, Missing Data in Longitudinal Studies: Strategies for Bayesian Modeling and Sensitivity Analysis describes a comprehensive Bayesian approach for drawing inference from incomplete data in longitudinal studies. To illustrate these methods, the authors employ
Publisher: CRC Press
ISBN: 1420011189
Category : Mathematics
Languages : en
Pages : 324
Book Description
Drawing from the authors' own work and from the most recent developments in the field, Missing Data in Longitudinal Studies: Strategies for Bayesian Modeling and Sensitivity Analysis describes a comprehensive Bayesian approach for drawing inference from incomplete data in longitudinal studies. To illustrate these methods, the authors employ
Biocomputing 2023 - Proceedings Of The Pacific Symposium
Author: Russ B Altman
Publisher: World Scientific
ISBN: 9811270627
Category : Science
Languages : en
Pages : 572
Book Description
The Pacific Symposium on Biocomputing (PSB) 2023 is an international, multidisciplinary conference for the presentation and discussion of current research in the theory and application of computational methods in problems of biological significance. Presentations are rigorously peer reviewed and are published in an archival proceedings volume. PSB 2023 will be held on January 3-7, 2023 in Kohala Coast, Hawaii. Tutorials and workshops will be offered prior to the start of the conference.PSB 2023 will bring together top researchers from the US, the Asian Pacific nations, and around the world to exchange research results and address open issues in all aspects of computational biology. It is a forum for the presentation of work in databases, algorithms, interfaces, visualization, modeling, and other computational methods, as applied to biological problems, with emphasis on applications in data-rich areas of molecular biology.The PSB has been designed to be responsive to the need for critical mass in sub-disciplines within biocomputing. For that reason, it is the only meeting whose sessions are defined dynamically each year in response to specific proposals. PSB sessions are organized by leaders of research in biocomputing's 'hot topics.' In this way, the meeting provides an early forum for serious examination of emerging methods and approaches in this rapidly changing field.
Publisher: World Scientific
ISBN: 9811270627
Category : Science
Languages : en
Pages : 572
Book Description
The Pacific Symposium on Biocomputing (PSB) 2023 is an international, multidisciplinary conference for the presentation and discussion of current research in the theory and application of computational methods in problems of biological significance. Presentations are rigorously peer reviewed and are published in an archival proceedings volume. PSB 2023 will be held on January 3-7, 2023 in Kohala Coast, Hawaii. Tutorials and workshops will be offered prior to the start of the conference.PSB 2023 will bring together top researchers from the US, the Asian Pacific nations, and around the world to exchange research results and address open issues in all aspects of computational biology. It is a forum for the presentation of work in databases, algorithms, interfaces, visualization, modeling, and other computational methods, as applied to biological problems, with emphasis on applications in data-rich areas of molecular biology.The PSB has been designed to be responsive to the need for critical mass in sub-disciplines within biocomputing. For that reason, it is the only meeting whose sessions are defined dynamically each year in response to specific proposals. PSB sessions are organized by leaders of research in biocomputing's 'hot topics.' In this way, the meeting provides an early forum for serious examination of emerging methods and approaches in this rapidly changing field.
Bayesian Models for Categorical Data
Author: Peter Congdon
Publisher: John Wiley & Sons
ISBN: 0470092386
Category : Mathematics
Languages : en
Pages : 446
Book Description
The use of Bayesian methods for the analysis of data has grown substantially in areas as diverse as applied statistics, psychology, economics and medical science. Bayesian Methods for Categorical Data sets out to demystify modern Bayesian methods, making them accessible to students and researchers alike. Emphasizing the use of statistical computing and applied data analysis, this book provides a comprehensive introduction to Bayesian methods of categorical outcomes. * Reviews recent Bayesian methodology for categorical outcomes (binary, count and multinomial data). * Considers missing data models techniques and non-standard models (ZIP and negative binomial). * Evaluates time series and spatio-temporal models for discrete data. * Features discussion of univariate and multivariate techniques. * Provides a set of downloadable worked examples with documented WinBUGS code, available from an ftp site. The author's previous 2 bestselling titles provided a comprehensive introduction to the theory and application of Bayesian models. Bayesian Models for Categorical Data continues to build upon this foundation by developing their application to categorical, or discrete data - one of the most common types of data available. The author's clear and logical approach makes the book accessible to a wide range of students and practitioners, including those dealing with categorical data in medicine, sociology, psychology and epidemiology.
Publisher: John Wiley & Sons
ISBN: 0470092386
Category : Mathematics
Languages : en
Pages : 446
Book Description
The use of Bayesian methods for the analysis of data has grown substantially in areas as diverse as applied statistics, psychology, economics and medical science. Bayesian Methods for Categorical Data sets out to demystify modern Bayesian methods, making them accessible to students and researchers alike. Emphasizing the use of statistical computing and applied data analysis, this book provides a comprehensive introduction to Bayesian methods of categorical outcomes. * Reviews recent Bayesian methodology for categorical outcomes (binary, count and multinomial data). * Considers missing data models techniques and non-standard models (ZIP and negative binomial). * Evaluates time series and spatio-temporal models for discrete data. * Features discussion of univariate and multivariate techniques. * Provides a set of downloadable worked examples with documented WinBUGS code, available from an ftp site. The author's previous 2 bestselling titles provided a comprehensive introduction to the theory and application of Bayesian models. Bayesian Models for Categorical Data continues to build upon this foundation by developing their application to categorical, or discrete data - one of the most common types of data available. The author's clear and logical approach makes the book accessible to a wide range of students and practitioners, including those dealing with categorical data in medicine, sociology, psychology and epidemiology.
Applied Longitudinal Analysis
Author: Garrett M. Fitzmaurice
Publisher: John Wiley & Sons
ISBN: 1118551796
Category : Mathematics
Languages : en
Pages : 758
Book Description
Praise for the First Edition ". . . [this book] should be on the shelf of everyone interested in . . . longitudinal data analysis." —Journal of the American Statistical Association Features newly developed topics and applications of the analysis of longitudinal data Applied Longitudinal Analysis, Second Edition presents modern methods for analyzing data from longitudinal studies and now features the latest state-of-the-art techniques. The book emphasizes practical, rather than theoretical, aspects of methods for the analysis of diverse types of longitudinal data that can be applied across various fields of study, from the health and medical sciences to the social and behavioral sciences. The authors incorporate their extensive academic and research experience along with various updates that have been made in response to reader feedback. The Second Edition features six newly added chapters that explore topics currently evolving in the field, including: Fixed effects and mixed effects models Marginal models and generalized estimating equations Approximate methods for generalized linear mixed effects models Multiple imputation and inverse probability weighted methods Smoothing methods for longitudinal data Sample size and power Each chapter presents methods in the setting of applications to data sets drawn from the health sciences. New problem sets have been added to many chapters, and a related website features sample programs and computer output using SAS, Stata, and R, as well as data sets and supplemental slides to facilitate a complete understanding of the material. With its strong emphasis on multidisciplinary applications and the interpretation of results, Applied Longitudinal Analysis, Second Edition is an excellent book for courses on statistics in the health and medical sciences at the upper-undergraduate and graduate levels. The book also serves as a valuable reference for researchers and professionals in the medical, public health, and pharmaceutical fields as well as those in social and behavioral sciences who would like to learn more about analyzing longitudinal data.
Publisher: John Wiley & Sons
ISBN: 1118551796
Category : Mathematics
Languages : en
Pages : 758
Book Description
Praise for the First Edition ". . . [this book] should be on the shelf of everyone interested in . . . longitudinal data analysis." —Journal of the American Statistical Association Features newly developed topics and applications of the analysis of longitudinal data Applied Longitudinal Analysis, Second Edition presents modern methods for analyzing data from longitudinal studies and now features the latest state-of-the-art techniques. The book emphasizes practical, rather than theoretical, aspects of methods for the analysis of diverse types of longitudinal data that can be applied across various fields of study, from the health and medical sciences to the social and behavioral sciences. The authors incorporate their extensive academic and research experience along with various updates that have been made in response to reader feedback. The Second Edition features six newly added chapters that explore topics currently evolving in the field, including: Fixed effects and mixed effects models Marginal models and generalized estimating equations Approximate methods for generalized linear mixed effects models Multiple imputation and inverse probability weighted methods Smoothing methods for longitudinal data Sample size and power Each chapter presents methods in the setting of applications to data sets drawn from the health sciences. New problem sets have been added to many chapters, and a related website features sample programs and computer output using SAS, Stata, and R, as well as data sets and supplemental slides to facilitate a complete understanding of the material. With its strong emphasis on multidisciplinary applications and the interpretation of results, Applied Longitudinal Analysis, Second Edition is an excellent book for courses on statistics in the health and medical sciences at the upper-undergraduate and graduate levels. The book also serves as a valuable reference for researchers and professionals in the medical, public health, and pharmaceutical fields as well as those in social and behavioral sciences who would like to learn more about analyzing longitudinal data.
Linear Models
Author: Brenton R. Clarke
Publisher: John Wiley & Sons
ISBN: 9780470377970
Category : Mathematics
Languages : en
Pages : 288
Book Description
An insightful approach to the analysis of variance in the study of linear models Linear Models explores the theory of linear models and the dynamic relationships that these models have with Analysis of Variance (ANOVA), experimental design, and random and mixed-model effects. This one-of-a-kind book emphasizes an approach that clearly explains the distribution theory of linear models and experimental design starting from basic mathematical concepts in linear algebra. The author begins with a presentation of the classic fixed-effects linear model and goes on to illustrate eight common linear models, along with the value of their use in statistics. From this foundation, subsequent chapters introduce concepts pertaining to the linear model, starting with vector space theory and the theory of least-squares estimation. An outline of the Helmert matrix is also presented, along with a thorough explanation of how the ANOVA is created in both typical two-way and higher layout designs, ultimately revealing the distribution theory. Other important topics covered include: Vector space theory The theory of least squares estimation Gauss-Markov theorem Kronecker products Diagnostic and robust methods for linear models Likelihood approaches to estimation A discussion of Bayesian theory is also included for purposes of comparison and contrast, and numerous illustrative exercises assist the reader with uncovering the nature of the models, using both classic and new data sets. Requiring only a working knowledge of basic probability and statistical inference, Linear Models is a valuable book for courses on linear models at the upper-undergraduate and graduate levels. It is also an excellent reference for practitioners who use linear models to conduct research in the fields of econometrics, psychology, sociology, biology, and agriculture.
Publisher: John Wiley & Sons
ISBN: 9780470377970
Category : Mathematics
Languages : en
Pages : 288
Book Description
An insightful approach to the analysis of variance in the study of linear models Linear Models explores the theory of linear models and the dynamic relationships that these models have with Analysis of Variance (ANOVA), experimental design, and random and mixed-model effects. This one-of-a-kind book emphasizes an approach that clearly explains the distribution theory of linear models and experimental design starting from basic mathematical concepts in linear algebra. The author begins with a presentation of the classic fixed-effects linear model and goes on to illustrate eight common linear models, along with the value of their use in statistics. From this foundation, subsequent chapters introduce concepts pertaining to the linear model, starting with vector space theory and the theory of least-squares estimation. An outline of the Helmert matrix is also presented, along with a thorough explanation of how the ANOVA is created in both typical two-way and higher layout designs, ultimately revealing the distribution theory. Other important topics covered include: Vector space theory The theory of least squares estimation Gauss-Markov theorem Kronecker products Diagnostic and robust methods for linear models Likelihood approaches to estimation A discussion of Bayesian theory is also included for purposes of comparison and contrast, and numerous illustrative exercises assist the reader with uncovering the nature of the models, using both classic and new data sets. Requiring only a working knowledge of basic probability and statistical inference, Linear Models is a valuable book for courses on linear models at the upper-undergraduate and graduate levels. It is also an excellent reference for practitioners who use linear models to conduct research in the fields of econometrics, psychology, sociology, biology, and agriculture.