Author: Richard Klima
Publisher: CRC Press
ISBN: 1482248255
Category : Mathematics
Languages : en
Pages : 556
Book Description
Applied Abstract Algebra with MapleTM and MATLAB provides an in-depth introduction to real-world abstract algebraic problems. This popular textbook covers a variety of topics including block designs, coding theory, cryptography, and counting techniques, including Polya's and Burnside's theorems. The book also includes a concise review of all prereq
Applied Abstract Algebra with MapleTM and MATLAB
Author: Richard Klima
Publisher: CRC Press
ISBN: 1482248255
Category : Mathematics
Languages : en
Pages : 556
Book Description
Applied Abstract Algebra with MapleTM and MATLAB provides an in-depth introduction to real-world abstract algebraic problems. This popular textbook covers a variety of topics including block designs, coding theory, cryptography, and counting techniques, including Polya's and Burnside's theorems. The book also includes a concise review of all prereq
Publisher: CRC Press
ISBN: 1482248255
Category : Mathematics
Languages : en
Pages : 556
Book Description
Applied Abstract Algebra with MapleTM and MATLAB provides an in-depth introduction to real-world abstract algebraic problems. This popular textbook covers a variety of topics including block designs, coding theory, cryptography, and counting techniques, including Polya's and Burnside's theorems. The book also includes a concise review of all prereq
Applied Abstract Algebra with MapleTM and MATLAB®
Author: Ernest Stitzinger
Publisher:
ISBN: 9781032918907
Category :
Languages : en
Pages : 0
Book Description
Publisher:
ISBN: 9781032918907
Category :
Languages : en
Pages : 0
Book Description
A Bridge to Higher Mathematics
Author: Valentin Deaconu
Publisher: CRC Press
ISBN: 1498775276
Category : Mathematics
Languages : en
Pages : 213
Book Description
A Bridge to Higher Mathematics is more than simply another book to aid the transition to advanced mathematics. The authors intend to assist students in developing a deeper understanding of mathematics and mathematical thought. The only way to understand mathematics is by doing mathematics. The reader will learn the language of axioms and theorems and will write convincing and cogent proofs using quantifiers. Students will solve many puzzles and encounter some mysteries and challenging problems. The emphasis is on proof. To progress towards mathematical maturity, it is necessary to be trained in two aspects: the ability to read and understand a proof and the ability to write a proof. The journey begins with elements of logic and techniques of proof, then with elementary set theory, relations and functions. Peano axioms for positive integers and for natural numbers follow, in particular mathematical and other forms of induction. Next is the construction of integers including some elementary number theory. The notions of finite and infinite sets, cardinality of counting techniques and combinatorics illustrate more techniques of proof. For more advanced readers, the text concludes with sets of rational numbers, the set of reals and the set of complex numbers. Topics, like Zorn’s lemma and the axiom of choice are included. More challenging problems are marked with a star. All these materials are optional, depending on the instructor and the goals of the course.
Publisher: CRC Press
ISBN: 1498775276
Category : Mathematics
Languages : en
Pages : 213
Book Description
A Bridge to Higher Mathematics is more than simply another book to aid the transition to advanced mathematics. The authors intend to assist students in developing a deeper understanding of mathematics and mathematical thought. The only way to understand mathematics is by doing mathematics. The reader will learn the language of axioms and theorems and will write convincing and cogent proofs using quantifiers. Students will solve many puzzles and encounter some mysteries and challenging problems. The emphasis is on proof. To progress towards mathematical maturity, it is necessary to be trained in two aspects: the ability to read and understand a proof and the ability to write a proof. The journey begins with elements of logic and techniques of proof, then with elementary set theory, relations and functions. Peano axioms for positive integers and for natural numbers follow, in particular mathematical and other forms of induction. Next is the construction of integers including some elementary number theory. The notions of finite and infinite sets, cardinality of counting techniques and combinatorics illustrate more techniques of proof. For more advanced readers, the text concludes with sets of rational numbers, the set of reals and the set of complex numbers. Topics, like Zorn’s lemma and the axiom of choice are included. More challenging problems are marked with a star. All these materials are optional, depending on the instructor and the goals of the course.
Exploring Geometry
Author: Michael Hvidsten
Publisher: CRC Press
ISBN: 1498760988
Category : Mathematics
Languages : en
Pages : 532
Book Description
Exploring Geometry, Second Edition promotes student engagement with the beautiful ideas of geometry. Every major concept is introduced in its historical context and connects the idea with real-life. A system of experimentation followed by rigorous explanation and proof is central. Exploratory projects play an integral role in this text. Students develop a better sense of how to prove a result and visualize connections between statements, making these connections real. They develop the intuition needed to conjecture a theorem and devise a proof of what they have observed. Features: Second edition of a successful textbook for the first undergraduate course Every major concept is introduced in its historical context and connects the idea with real life Focuses on experimentation Projects help enhance student learning All major software programs can be used; free software from author
Publisher: CRC Press
ISBN: 1498760988
Category : Mathematics
Languages : en
Pages : 532
Book Description
Exploring Geometry, Second Edition promotes student engagement with the beautiful ideas of geometry. Every major concept is introduced in its historical context and connects the idea with real-life. A system of experimentation followed by rigorous explanation and proof is central. Exploratory projects play an integral role in this text. Students develop a better sense of how to prove a result and visualize connections between statements, making these connections real. They develop the intuition needed to conjecture a theorem and devise a proof of what they have observed. Features: Second edition of a successful textbook for the first undergraduate course Every major concept is introduced in its historical context and connects the idea with real life Focuses on experimentation Projects help enhance student learning All major software programs can be used; free software from author
Applications of Abstract Algebra with Maple and MATLAB, Second Edition
Author: Richard Klima
Publisher: CRC Press
ISBN: 9781584886105
Category : Mathematics
Languages : en
Pages : 536
Book Description
Eliminating the need for heavy number-crunching, sophisticated mathematical software packages open the door to areas like cryptography, coding theory, and combinatorics that are dependent on abstract algebra. Applications of Abstract Algebra with Maple and MATLAB®, Second Edition explores these topics and shows how to apply the software programs to abstract algebra and its related fields. Carefully integrating MapleTM and MATLAB®, this book provides an in-depth introduction to real-world abstract algebraic problems. The first chapter offers a concise and comprehensive review of prerequisite advanced mathematics. The next several chapters examine block designs, coding theory, and cryptography while the final chapters cover counting techniques, including Pólya's and Burnside's theorems. Other topics discussed include the Rivest, Shamir, and Adleman (RSA) cryptosystem, digital signatures, primes for security, and elliptic curve cryptosystems. New to the Second Edition Three new chapters on Vigenère ciphers, the Advanced Encryption Standard (AES), and graph theory as well as new MATLAB and Maple sections Expanded exercises and additional research exercises Maple and MATLAB files and functions available for download online and from a CD-ROM With the incorporation of MATLAB, this second edition further illuminates the topics discussed by eliminating extensive computations of abstract algebraic techniques. The clear organization of the book as well as the inclusion of two of the most respected mathematical software packages available make the book a useful tool for students, mathematicians, and computer scientists.
Publisher: CRC Press
ISBN: 9781584886105
Category : Mathematics
Languages : en
Pages : 536
Book Description
Eliminating the need for heavy number-crunching, sophisticated mathematical software packages open the door to areas like cryptography, coding theory, and combinatorics that are dependent on abstract algebra. Applications of Abstract Algebra with Maple and MATLAB®, Second Edition explores these topics and shows how to apply the software programs to abstract algebra and its related fields. Carefully integrating MapleTM and MATLAB®, this book provides an in-depth introduction to real-world abstract algebraic problems. The first chapter offers a concise and comprehensive review of prerequisite advanced mathematics. The next several chapters examine block designs, coding theory, and cryptography while the final chapters cover counting techniques, including Pólya's and Burnside's theorems. Other topics discussed include the Rivest, Shamir, and Adleman (RSA) cryptosystem, digital signatures, primes for security, and elliptic curve cryptosystems. New to the Second Edition Three new chapters on Vigenère ciphers, the Advanced Encryption Standard (AES), and graph theory as well as new MATLAB and Maple sections Expanded exercises and additional research exercises Maple and MATLAB files and functions available for download online and from a CD-ROM With the incorporation of MATLAB, this second edition further illuminates the topics discussed by eliminating extensive computations of abstract algebraic techniques. The clear organization of the book as well as the inclusion of two of the most respected mathematical software packages available make the book a useful tool for students, mathematicians, and computer scientists.
Sports Math
Author: Roland B. Minton
Publisher: CRC Press
ISBN: 1498706320
Category : Mathematics
Languages : en
Pages : 291
Book Description
Can you really keep your eye on the ball? How is massive data collection changing sports? Sports science courses are growing in popularity. The author’s course at Roanoke College is a mix of physics, physiology, mathematics, and statistics. Many students of both genders find it exciting to think about sports. Sports problems are easy to create and state, even for students who do not live sports 24/7. Sports are part of their culture and knowledge base, and the opportunity to be an expert on some area of sports is invigorating. This should be the primary reason for the growth of mathematics of sports courses: the topic provides intrinsic motivation for students to do their best work. From the Author: "The topics covered in Sports Science and Sports Analytics courses vary widely. To use a golfing analogy, writing a book like this is like hitting a drive at a driving range; there are many directions you can go without going out of bounds. At the driving range, I pick out a small target to focus on, and that is what I have done here. I have chosen a sample of topics I find very interesting. Ideally, users of this book will have enough to choose from to suit whichever version of a sports course is being run." "The book is very appealing to teach from as well as to learn from. Students seem to have a growing interest in ways to apply traditionally different areas to solve problems. This, coupled with an enthusiasm for sports, makes Dr. Minton’s book appealing to me."—Kevin Hutson, Furman University Features Provides an introduction to several topics within the field of sports analytics Contains numerous sports examples showing how things actually work Includes concrete examples of how Moneyball ideas actually work Covers sports illusions (can you really "keep your eye on the ball") in a unique way Discusses many of the concepts, terms, and metrics that are new to sports
Publisher: CRC Press
ISBN: 1498706320
Category : Mathematics
Languages : en
Pages : 291
Book Description
Can you really keep your eye on the ball? How is massive data collection changing sports? Sports science courses are growing in popularity. The author’s course at Roanoke College is a mix of physics, physiology, mathematics, and statistics. Many students of both genders find it exciting to think about sports. Sports problems are easy to create and state, even for students who do not live sports 24/7. Sports are part of their culture and knowledge base, and the opportunity to be an expert on some area of sports is invigorating. This should be the primary reason for the growth of mathematics of sports courses: the topic provides intrinsic motivation for students to do their best work. From the Author: "The topics covered in Sports Science and Sports Analytics courses vary widely. To use a golfing analogy, writing a book like this is like hitting a drive at a driving range; there are many directions you can go without going out of bounds. At the driving range, I pick out a small target to focus on, and that is what I have done here. I have chosen a sample of topics I find very interesting. Ideally, users of this book will have enough to choose from to suit whichever version of a sports course is being run." "The book is very appealing to teach from as well as to learn from. Students seem to have a growing interest in ways to apply traditionally different areas to solve problems. This, coupled with an enthusiasm for sports, makes Dr. Minton’s book appealing to me."—Kevin Hutson, Furman University Features Provides an introduction to several topics within the field of sports analytics Contains numerous sports examples showing how things actually work Includes concrete examples of how Moneyball ideas actually work Covers sports illusions (can you really "keep your eye on the ball") in a unique way Discusses many of the concepts, terms, and metrics that are new to sports
Applied Algebra
Author: Darel W. Hardy
Publisher: CRC Press
ISBN: 1439894698
Category : Computers
Languages : en
Pages : 425
Book Description
Using mathematical tools from number theory and finite fields, Applied Algebra: Codes, Ciphers, and Discrete Algorithms, Second Edition presents practical methods for solving problems in data security and data integrity. It is designed for an applied algebra course for students who have had prior classes in abstract or linear algebra. While the content has been reworked and improved, this edition continues to cover many algorithms that arise in cryptography and error-control codes. New to the Second Edition Downloadable resources containing an interactive version of the book that is powered by Scientific Notebook®, a mathematical word processor and easy-to-use computer algebra system New appendix that reviews prerequisite topics in algebra and number theory Double the number of exercises Instead of a general study on finite groups, the book considers finite groups of permutations and develops just enough of the theory of finite fields to facilitate construction of the fields used for error-control codes and the Advanced Encryption Standard. It also deals with integers and polynomials. Explaining the mathematics as needed, this text thoroughly explores how mathematical techniques can be used to solve practical problems. About the AuthorsDarel W. Hardy is Professor Emeritus in the Department of Mathematics at Colorado State University. His research interests include applied algebra and semigroups. Fred Richman is a professor in the Department of Mathematical Sciences at Florida Atlantic University. His research interests include Abelian group theory and constructive mathematics. Carol L. Walker is Associate Dean Emeritus in the Department of Mathematical Sciences at New Mexico State University. Her research interests include Abelian group theory, applications of homological algebra and category theory, and the mathematics of fuzzy sets and fuzzy logic.
Publisher: CRC Press
ISBN: 1439894698
Category : Computers
Languages : en
Pages : 425
Book Description
Using mathematical tools from number theory and finite fields, Applied Algebra: Codes, Ciphers, and Discrete Algorithms, Second Edition presents practical methods for solving problems in data security and data integrity. It is designed for an applied algebra course for students who have had prior classes in abstract or linear algebra. While the content has been reworked and improved, this edition continues to cover many algorithms that arise in cryptography and error-control codes. New to the Second Edition Downloadable resources containing an interactive version of the book that is powered by Scientific Notebook®, a mathematical word processor and easy-to-use computer algebra system New appendix that reviews prerequisite topics in algebra and number theory Double the number of exercises Instead of a general study on finite groups, the book considers finite groups of permutations and develops just enough of the theory of finite fields to facilitate construction of the fields used for error-control codes and the Advanced Encryption Standard. It also deals with integers and polynomials. Explaining the mathematics as needed, this text thoroughly explores how mathematical techniques can be used to solve practical problems. About the AuthorsDarel W. Hardy is Professor Emeritus in the Department of Mathematics at Colorado State University. His research interests include applied algebra and semigroups. Fred Richman is a professor in the Department of Mathematical Sciences at Florida Atlantic University. His research interests include Abelian group theory and constructive mathematics. Carol L. Walker is Associate Dean Emeritus in the Department of Mathematical Sciences at New Mexico State University. Her research interests include Abelian group theory, applications of homological algebra and category theory, and the mathematics of fuzzy sets and fuzzy logic.
Mathematical Methods for Physics
Author: J. R. Claycomb
Publisher: Stylus Publishing, LLC
ISBN: 1683920996
Category : Science
Languages : en
Pages : 1122
Book Description
This book may be used by students and professionals in physics and engineering that have completed first-year calculus and physics. An introductory chapter reviews algebra, trigonometry, units and complex numbers that are frequently used in physics. Examples using MATLAB and Maple for symbolic and numerical calculations in physics with a variety of plotting features are included in all 16 chapters. The book applies many of mathematical concepts covered in Chapters 1-9 to fundamental physics topics in mechanics, electromagnetics; quantum mechanics and relativity in Chapters 10-16. Companion files are included with MATLAB and Maple worksheets and files, and all of the figures from the text. Features: • Each chapter includes the mathematical development of the concept with numerous examples • MATLAB & Maple examples are integrated in each chapter throughout the book • Applies the mathematical concepts to fundamental physics principles such as relativity, mechanics, electromagnetics, etc. • Introduces basic MATLAB and Maple commands and programming structures • Includes companion files with MATLAB and Maple files and worksheets, and all of the figures from the text
Publisher: Stylus Publishing, LLC
ISBN: 1683920996
Category : Science
Languages : en
Pages : 1122
Book Description
This book may be used by students and professionals in physics and engineering that have completed first-year calculus and physics. An introductory chapter reviews algebra, trigonometry, units and complex numbers that are frequently used in physics. Examples using MATLAB and Maple for symbolic and numerical calculations in physics with a variety of plotting features are included in all 16 chapters. The book applies many of mathematical concepts covered in Chapters 1-9 to fundamental physics topics in mechanics, electromagnetics; quantum mechanics and relativity in Chapters 10-16. Companion files are included with MATLAB and Maple worksheets and files, and all of the figures from the text. Features: • Each chapter includes the mathematical development of the concept with numerous examples • MATLAB & Maple examples are integrated in each chapter throughout the book • Applies the mathematical concepts to fundamental physics principles such as relativity, mechanics, electromagnetics, etc. • Introduces basic MATLAB and Maple commands and programming structures • Includes companion files with MATLAB and Maple files and worksheets, and all of the figures from the text
Abstract Algebra
Author: Claudia Menini
Publisher: CRC Press
ISBN: 1351991469
Category : Mathematics
Languages : en
Pages : 784
Book Description
In one exceptional volume, Abstract Algebra covers subject matter typically taught over the course of two or three years and offers a self-contained presentation, detailed definitions, and excellent chapter-matched exercises to smooth the trajectory of learning algebra from zero to one. Field-tested through advance use in the ERASMUS educational project in Europe, this ambitious, comprehensive book includes an original treatment of representation of finite groups that avoids the use of semisimple ring theory and explains sets, maps, posets, lattices, and other essentials of the algebraic language; Peano's axioms and cardinality; groupoids, semigroups, monoids, groups; and normal subgroups.
Publisher: CRC Press
ISBN: 1351991469
Category : Mathematics
Languages : en
Pages : 784
Book Description
In one exceptional volume, Abstract Algebra covers subject matter typically taught over the course of two or three years and offers a self-contained presentation, detailed definitions, and excellent chapter-matched exercises to smooth the trajectory of learning algebra from zero to one. Field-tested through advance use in the ERASMUS educational project in Europe, this ambitious, comprehensive book includes an original treatment of representation of finite groups that avoids the use of semisimple ring theory and explains sets, maps, posets, lattices, and other essentials of the algebraic language; Peano's axioms and cardinality; groupoids, semigroups, monoids, groups; and normal subgroups.
Applied Algebra
Author: Darel W. Hardy
Publisher: CRC Press
ISBN: 1420071432
Category : Mathematics
Languages : en
Pages : 426
Book Description
Using mathematical tools from number theory and finite fields, Applied Algebra: Codes, Ciphers, and Discrete Algorithms, Second Edition presents practical methods for solving problems in data security and data integrity. It is designed for an applied algebra course for students who have had prior classes in abstract or linear algebra. While the content has been reworked and improved, this edition continues to cover many algorithms that arise in cryptography and error-control codes. New to the Second Edition A CD-ROM containing an interactive version of the book that is powered by Scientific Notebook®, a mathematical word processor and easy-to-use computer algebra system New appendix that reviews prerequisite topics in algebra and number theory Double the number of exercises Instead of a general study on finite groups, the book considers finite groups of permutations and develops just enough of the theory of finite fields to facilitate construction of the fields used for error-control codes and the Advanced Encryption Standard. It also deals with integers and polynomials. Explaining the mathematics as needed, this text thoroughly explores how mathematical techniques can be used to solve practical problems. About the Authors Darel W. Hardy is Professor Emeritus in the Department of Mathematics at Colorado State University. His research interests include applied algebra and semigroups. Fred Richman is a professor in the Department of Mathematical Sciences at Florida Atlantic University. His research interests include Abelian group theory and constructive mathematics. Carol L. Walker is Associate Dean Emeritus in the Department of Mathematical Sciences at New Mexico State University. Her research interests include Abelian group theory, applications of homological algebra and category theory, and the mathematics of fuzzy sets and fuzzy logic.
Publisher: CRC Press
ISBN: 1420071432
Category : Mathematics
Languages : en
Pages : 426
Book Description
Using mathematical tools from number theory and finite fields, Applied Algebra: Codes, Ciphers, and Discrete Algorithms, Second Edition presents practical methods for solving problems in data security and data integrity. It is designed for an applied algebra course for students who have had prior classes in abstract or linear algebra. While the content has been reworked and improved, this edition continues to cover many algorithms that arise in cryptography and error-control codes. New to the Second Edition A CD-ROM containing an interactive version of the book that is powered by Scientific Notebook®, a mathematical word processor and easy-to-use computer algebra system New appendix that reviews prerequisite topics in algebra and number theory Double the number of exercises Instead of a general study on finite groups, the book considers finite groups of permutations and develops just enough of the theory of finite fields to facilitate construction of the fields used for error-control codes and the Advanced Encryption Standard. It also deals with integers and polynomials. Explaining the mathematics as needed, this text thoroughly explores how mathematical techniques can be used to solve practical problems. About the Authors Darel W. Hardy is Professor Emeritus in the Department of Mathematics at Colorado State University. His research interests include applied algebra and semigroups. Fred Richman is a professor in the Department of Mathematical Sciences at Florida Atlantic University. His research interests include Abelian group theory and constructive mathematics. Carol L. Walker is Associate Dean Emeritus in the Department of Mathematical Sciences at New Mexico State University. Her research interests include Abelian group theory, applications of homological algebra and category theory, and the mathematics of fuzzy sets and fuzzy logic.