Author: Jingzheng Ren
Publisher: Elsevier
ISBN: 012821743X
Category : Technology & Engineering
Languages : en
Pages : 542
Book Description
Applications of Artificial Intelligence in Process Systems Engineering offers a broad perspective on the issues related to artificial intelligence technologies and their applications in chemical and process engineering. The book comprehensively introduces the methodology and applications of AI technologies in process systems engineering, making it an indispensable reference for researchers and students. As chemical processes and systems are usually non-linear and complex, thus making it challenging to apply AI methods and technologies, this book is an ideal resource on emerging areas such as cloud computing, big data, the industrial Internet of Things and deep learning. With process systems engineering's potential to become one of the driving forces for the development of AI technologies, this book covers all the right bases. - Explains the concept of machine learning, deep learning and state-of-the-art intelligent algorithms - Discusses AI-based applications in process modeling and simulation, process integration and optimization, process control, and fault detection and diagnosis - Gives direction to future development trends of AI technologies in chemical and process engineering
Applications of Artificial Intelligence in Process Systems Engineering
Author: Jingzheng Ren
Publisher: Elsevier
ISBN: 012821743X
Category : Technology & Engineering
Languages : en
Pages : 542
Book Description
Applications of Artificial Intelligence in Process Systems Engineering offers a broad perspective on the issues related to artificial intelligence technologies and their applications in chemical and process engineering. The book comprehensively introduces the methodology and applications of AI technologies in process systems engineering, making it an indispensable reference for researchers and students. As chemical processes and systems are usually non-linear and complex, thus making it challenging to apply AI methods and technologies, this book is an ideal resource on emerging areas such as cloud computing, big data, the industrial Internet of Things and deep learning. With process systems engineering's potential to become one of the driving forces for the development of AI technologies, this book covers all the right bases. - Explains the concept of machine learning, deep learning and state-of-the-art intelligent algorithms - Discusses AI-based applications in process modeling and simulation, process integration and optimization, process control, and fault detection and diagnosis - Gives direction to future development trends of AI technologies in chemical and process engineering
Publisher: Elsevier
ISBN: 012821743X
Category : Technology & Engineering
Languages : en
Pages : 542
Book Description
Applications of Artificial Intelligence in Process Systems Engineering offers a broad perspective on the issues related to artificial intelligence technologies and their applications in chemical and process engineering. The book comprehensively introduces the methodology and applications of AI technologies in process systems engineering, making it an indispensable reference for researchers and students. As chemical processes and systems are usually non-linear and complex, thus making it challenging to apply AI methods and technologies, this book is an ideal resource on emerging areas such as cloud computing, big data, the industrial Internet of Things and deep learning. With process systems engineering's potential to become one of the driving forces for the development of AI technologies, this book covers all the right bases. - Explains the concept of machine learning, deep learning and state-of-the-art intelligent algorithms - Discusses AI-based applications in process modeling and simulation, process integration and optimization, process control, and fault detection and diagnosis - Gives direction to future development trends of AI technologies in chemical and process engineering
Systems Engineering and Artificial Intelligence
Author: William F. Lawless
Publisher: Springer Nature
ISBN: 3030772837
Category : Computers
Languages : en
Pages : 566
Book Description
This book provides a broad overview of the benefits from a Systems Engineering design philosophy in architecting complex systems composed of artificial intelligence (AI), machine learning (ML) and humans situated in chaotic environments. The major topics include emergence, verification and validation of systems using AI/ML and human systems integration to develop robust and effective human-machine teams—where the machines may have varying degrees of autonomy due to the sophistication of their embedded AI/ML. The chapters not only describe what has been learned, but also raise questions that must be answered to further advance the general Science of Autonomy. The science of how humans and machines operate as a team requires insights from, among others, disciplines such as the social sciences, national and international jurisprudence, ethics and policy, and sociology and psychology. The social sciences inform how context is constructed, how trust is affected when humans and machines depend upon each other and how human-machine teams need a shared language of explanation. National and international jurisprudence determine legal responsibilities of non-trivial human-machine failures, ethical standards shape global policy, and sociology provides a basis for understanding team norms across cultures. Insights from psychology may help us to understand the negative impact on humans if AI/ML based machines begin to outperform their human teammates and consequently diminish their value or importance. This book invites professionals and the curious alike to witness a new frontier open as the Science of Autonomy emerges.
Publisher: Springer Nature
ISBN: 3030772837
Category : Computers
Languages : en
Pages : 566
Book Description
This book provides a broad overview of the benefits from a Systems Engineering design philosophy in architecting complex systems composed of artificial intelligence (AI), machine learning (ML) and humans situated in chaotic environments. The major topics include emergence, verification and validation of systems using AI/ML and human systems integration to develop robust and effective human-machine teams—where the machines may have varying degrees of autonomy due to the sophistication of their embedded AI/ML. The chapters not only describe what has been learned, but also raise questions that must be answered to further advance the general Science of Autonomy. The science of how humans and machines operate as a team requires insights from, among others, disciplines such as the social sciences, national and international jurisprudence, ethics and policy, and sociology and psychology. The social sciences inform how context is constructed, how trust is affected when humans and machines depend upon each other and how human-machine teams need a shared language of explanation. National and international jurisprudence determine legal responsibilities of non-trivial human-machine failures, ethical standards shape global policy, and sociology provides a basis for understanding team norms across cultures. Insights from psychology may help us to understand the negative impact on humans if AI/ML based machines begin to outperform their human teammates and consequently diminish their value or importance. This book invites professionals and the curious alike to witness a new frontier open as the Science of Autonomy emerges.
Artificial Intelligence in Process Engineering
Author: Michael Mavrovouniotis
Publisher: Elsevier
ISBN: 0323153143
Category : Technology & Engineering
Languages : en
Pages : 383
Book Description
Artificial Intelligence in Process Engineering aims to present a diverse sample of Artificial Intelligence (AI) applications in process engineering. The book contains contributions, selected by the editors based on educational value and diversity of AI methods and process engineering application domains. Topics discussed in the text include the use of qualitative reasoning for modeling and simulation of chemical systems; the use of qualitative models in discrete event simulation to analyze malfunctions in processing systems; and the diagnosis of faults in processes that are controlled by Programmable Logic Controllers. There are also debates on the issue of quantitative versus qualitative information. The control of batch processes, a design of a system that synthesizes bioseparation processes, and process design in the domain of chemical (rather than biochemical) systems are likewise covered in the text. This publication will be of value to industrial engineers and process engineers and researchers.
Publisher: Elsevier
ISBN: 0323153143
Category : Technology & Engineering
Languages : en
Pages : 383
Book Description
Artificial Intelligence in Process Engineering aims to present a diverse sample of Artificial Intelligence (AI) applications in process engineering. The book contains contributions, selected by the editors based on educational value and diversity of AI methods and process engineering application domains. Topics discussed in the text include the use of qualitative reasoning for modeling and simulation of chemical systems; the use of qualitative models in discrete event simulation to analyze malfunctions in processing systems; and the diagnosis of faults in processes that are controlled by Programmable Logic Controllers. There are also debates on the issue of quantitative versus qualitative information. The control of batch processes, a design of a system that synthesizes bioseparation processes, and process design in the domain of chemical (rather than biochemical) systems are likewise covered in the text. This publication will be of value to industrial engineers and process engineers and researchers.
Artificial Intelligence in Industrial Applications
Author: Steven Lawrence Fernandes
Publisher: Springer Nature
ISBN: 3030853837
Category : Technology & Engineering
Languages : en
Pages : 203
Book Description
This book highlights the analytics and optimization issues in industry, to propose new approaches, and to present applications of innovative approaches in real facilities. In the past few decades there has been an exponential rise in the application of artificial intelligence for solving complex and intricate problems arising in industrial domain. The versatility of these techniques have made them a favorite among scientists and researchers working in diverse areas. The book is edited to serve a broad readership, including computer scientists, medical professionals, and mathematicians interested in studying computational intelligence and their applications. It will also be helpful for researchers, graduate and undergraduate students with an interest in the fields of Artificial Intelligence and Industrial problems. This book will be a useful resource for researchers, academicians as well as professionals interested in the highly interdisciplinary field of Artificial Intelligence.
Publisher: Springer Nature
ISBN: 3030853837
Category : Technology & Engineering
Languages : en
Pages : 203
Book Description
This book highlights the analytics and optimization issues in industry, to propose new approaches, and to present applications of innovative approaches in real facilities. In the past few decades there has been an exponential rise in the application of artificial intelligence for solving complex and intricate problems arising in industrial domain. The versatility of these techniques have made them a favorite among scientists and researchers working in diverse areas. The book is edited to serve a broad readership, including computer scientists, medical professionals, and mathematicians interested in studying computational intelligence and their applications. It will also be helpful for researchers, graduate and undergraduate students with an interest in the fields of Artificial Intelligence and Industrial problems. This book will be a useful resource for researchers, academicians as well as professionals interested in the highly interdisciplinary field of Artificial Intelligence.
Artificial Intelligence in Chemical Engineering
Author: Thomas E. Quantrille
Publisher: Elsevier
ISBN: 0080571212
Category : Technology & Engineering
Languages : en
Pages : 634
Book Description
Artificial intelligence (AI) is the part of computer science concerned with designing intelligent computer systems (systems that exhibit characteristics we associate with intelligence in human behavior). This book is the first published textbook of AI in chemical engineering, and provides broad and in-depth coverage of AI programming, AI principles, expert systems, and neural networks in chemical engineering. This book introduces the computational means and methodologies that are used to enable computers to perform intelligent engineering tasks. A key goal is to move beyond the principles of AI into its applications in chemical engineering. After reading this book, a chemical engineer will have a firm grounding in AI, know what chemical engineering applications of AI exist today, and understand the current challenges facing AI in engineering. - Allows the reader to learn AI quickly using inexpensive personal computers - Contains a large number of illustrative examples, simple exercises, and complex practice problems and solutions - Includes a computer diskette for an illustrated case study - Demonstrates an expert system for separation synthesis (EXSEP) - Presents a detailed review of published literature on expert systems and neural networks in chemical engineering
Publisher: Elsevier
ISBN: 0080571212
Category : Technology & Engineering
Languages : en
Pages : 634
Book Description
Artificial intelligence (AI) is the part of computer science concerned with designing intelligent computer systems (systems that exhibit characteristics we associate with intelligence in human behavior). This book is the first published textbook of AI in chemical engineering, and provides broad and in-depth coverage of AI programming, AI principles, expert systems, and neural networks in chemical engineering. This book introduces the computational means and methodologies that are used to enable computers to perform intelligent engineering tasks. A key goal is to move beyond the principles of AI into its applications in chemical engineering. After reading this book, a chemical engineer will have a firm grounding in AI, know what chemical engineering applications of AI exist today, and understand the current challenges facing AI in engineering. - Allows the reader to learn AI quickly using inexpensive personal computers - Contains a large number of illustrative examples, simple exercises, and complex practice problems and solutions - Includes a computer diskette for an illustrated case study - Demonstrates an expert system for separation synthesis (EXSEP) - Presents a detailed review of published literature on expert systems and neural networks in chemical engineering
Applications of Artificial Intelligence in Additive Manufacturing
Author: Sachin Salunkhe
Publisher: Engineering Science Reference
ISBN: 9781799885160
Category : Additive manufacturing
Languages : en
Pages : 272
Book Description
"This book provides introductory instruction on how to learn how to use artificial intelligence to produce additively manufactured parts, including a description of the starting points, what you can know, how it blends and how artificial intelligence in additive manufacturing apply"--
Publisher: Engineering Science Reference
ISBN: 9781799885160
Category : Additive manufacturing
Languages : en
Pages : 272
Book Description
"This book provides introductory instruction on how to learn how to use artificial intelligence to produce additively manufactured parts, including a description of the starting points, what you can know, how it blends and how artificial intelligence in additive manufacturing apply"--
Artificial Intelligence and Industrial Applications
Author: Tawfik Masrour
Publisher: Springer Nature
ISBN: 3030539709
Category : Technology & Engineering
Languages : en
Pages : 341
Book Description
This book gathers selected papers from Artificial Intelligence and Industrial Applications (A2IA’2020), the first installment of an annual international conference organized by ENSAM-Meknes at Moulay Ismail University, Morocco. The 29 papers presented here were carefully reviewed and selected from 141 submissions by an international scientific committee. They address various aspects of artificial intelligence such as digital twin, multiagent systems, deep learning, image processing and analysis, control, prediction, modeling, optimization and design, as well as AI applications in industry, health, energy, agriculture, and education. The book is intended for AI experts, offering them a valuable overview and global outlook for the future, and highlights a wealth of innovative ideas and recent, important advances in AI applications, both of a foundational and practical nature. It will also appeal to non-experts who are curious about this timely and important subject.
Publisher: Springer Nature
ISBN: 3030539709
Category : Technology & Engineering
Languages : en
Pages : 341
Book Description
This book gathers selected papers from Artificial Intelligence and Industrial Applications (A2IA’2020), the first installment of an annual international conference organized by ENSAM-Meknes at Moulay Ismail University, Morocco. The 29 papers presented here were carefully reviewed and selected from 141 submissions by an international scientific committee. They address various aspects of artificial intelligence such as digital twin, multiagent systems, deep learning, image processing and analysis, control, prediction, modeling, optimization and design, as well as AI applications in industry, health, energy, agriculture, and education. The book is intended for AI experts, offering them a valuable overview and global outlook for the future, and highlights a wealth of innovative ideas and recent, important advances in AI applications, both of a foundational and practical nature. It will also appeal to non-experts who are curious about this timely and important subject.
Artificial Intelligence in Mechanical and Industrial Engineering
Author: Kaushik Kumar
Publisher: CRC Press
ISBN: 1000396932
Category : Computers
Languages : en
Pages : 157
Book Description
Artificial Intelligence in Mechanical and Industrial Engineering offers a unified platform for the dissemination of basic and applied knowledge on the integration of artificial intelligence within the realm of mechanical and industrial engineering. The book covers the tools and information needed to build successful careers and a source of knowledge for those working with AI within these domains. The book offers a systematic approach to explicate fundamentals as well as recent advances. It incorporates various case studies for major topics as well as numerous examples. It will also include real-time intelligent automation and associated supporting methodologies and techniques, and cover decision-support systems, as well as applications of Chaos Theory and Fractals. The book will give scientists, researchers, instructors, students, and practitioners the tools and information needed to build successful careers and to be an impetus to advancements in next-generation mechanical and industrial engineering domains.
Publisher: CRC Press
ISBN: 1000396932
Category : Computers
Languages : en
Pages : 157
Book Description
Artificial Intelligence in Mechanical and Industrial Engineering offers a unified platform for the dissemination of basic and applied knowledge on the integration of artificial intelligence within the realm of mechanical and industrial engineering. The book covers the tools and information needed to build successful careers and a source of knowledge for those working with AI within these domains. The book offers a systematic approach to explicate fundamentals as well as recent advances. It incorporates various case studies for major topics as well as numerous examples. It will also include real-time intelligent automation and associated supporting methodologies and techniques, and cover decision-support systems, as well as applications of Chaos Theory and Fractals. The book will give scientists, researchers, instructors, students, and practitioners the tools and information needed to build successful careers and to be an impetus to advancements in next-generation mechanical and industrial engineering domains.
Advances in Artificial Intelligence, Software and Systems Engineering
Author: Tareq Z. Ahram
Publisher: Springer
ISBN: 3319942298
Category : Technology & Engineering
Languages : en
Pages : 573
Book Description
This book focuses on emerging issues following the integration of artificial intelligence systems in our daily lives. It focuses on the cognitive, visual, social and analytical aspects of computing and intelligent technologies, highlighting ways to improve technology acceptance, effectiveness, and efficiency. Topics such as responsibility, integration and training are discussed throughout. The book also reports on the latest advances in systems engineering, with a focus on societal challenges and next-generation systems and applications for meeting them. It also discusses applications in smart grids and infrastructures, systems engineering education as well as defense and aerospace. The book is based on both the AHFE 2018 International Conference on Human Factors in Artificial Intelligence and Social Computing, Software and Systems Engineering, The Human Side of Service Engineering and Human Factors in Energy, July 21–25, 2018, Loews Sapphire Falls Resort at Universal Studios, Orlando, Florida, USA.
Publisher: Springer
ISBN: 3319942298
Category : Technology & Engineering
Languages : en
Pages : 573
Book Description
This book focuses on emerging issues following the integration of artificial intelligence systems in our daily lives. It focuses on the cognitive, visual, social and analytical aspects of computing and intelligent technologies, highlighting ways to improve technology acceptance, effectiveness, and efficiency. Topics such as responsibility, integration and training are discussed throughout. The book also reports on the latest advances in systems engineering, with a focus on societal challenges and next-generation systems and applications for meeting them. It also discusses applications in smart grids and infrastructures, systems engineering education as well as defense and aerospace. The book is based on both the AHFE 2018 International Conference on Human Factors in Artificial Intelligence and Social Computing, Software and Systems Engineering, The Human Side of Service Engineering and Human Factors in Energy, July 21–25, 2018, Loews Sapphire Falls Resort at Universal Studios, Orlando, Florida, USA.
Machine Learning in Python for Process Systems Engineering
Author: Ankur Kumar
Publisher: MLforPSE
ISBN:
Category : Computers
Languages : en
Pages : 354
Book Description
This book provides an application-focused exposition of modern ML tools that have proven useful in process industry and hands-on illustrations on how to develop ML-based solutions for process monitoring, predictive maintenance, fault diagnosis, inferential modeling, dimensionality reduction, and process control. This book considers unique characteristics of industrial process data and uses real data from industrial systems for illustrations. With the focus on practical implementation and minimal programming or ML prerequisites, the book covers the gap in available ML resources for industrial practitioners. The authors of this book have drawn from their years of experience in developing data-driven industrial solutions to provide a guided tour along the wide range of available ML methods and declutter the world of machine learning. The readers will find all the resources they need to deal with high-dimensional, correlated, noisy, corrupted, multimode, and nonlinear process data. The book has been divided into four parts. Part 1 provides a perspective on the importance of ML in process systems engineering and lays down the basic foundations of ML. Part 2 provides in-detail presentation of classical ML techniques and has been written keeping in mind the various characteristics of industrial process systems. Part 3 is focused on artificial neural networks and deep learning. Part 4 covers the important topic of deploying ML solutions over web and shows how to build a production-ready process monitoring web application. Broadly, the book covers the following: Varied applications of ML in process industry Fundamentals of machine learning workflow Practical methodologies for pre-processing industrial data Classical ML methods and their application for process monitoring, fault diagnosis, and soft sensing Deep learning and its application for predictive maintenance Reinforcement learning and its application for process control Deployment of ML solution over web
Publisher: MLforPSE
ISBN:
Category : Computers
Languages : en
Pages : 354
Book Description
This book provides an application-focused exposition of modern ML tools that have proven useful in process industry and hands-on illustrations on how to develop ML-based solutions for process monitoring, predictive maintenance, fault diagnosis, inferential modeling, dimensionality reduction, and process control. This book considers unique characteristics of industrial process data and uses real data from industrial systems for illustrations. With the focus on practical implementation and minimal programming or ML prerequisites, the book covers the gap in available ML resources for industrial practitioners. The authors of this book have drawn from their years of experience in developing data-driven industrial solutions to provide a guided tour along the wide range of available ML methods and declutter the world of machine learning. The readers will find all the resources they need to deal with high-dimensional, correlated, noisy, corrupted, multimode, and nonlinear process data. The book has been divided into four parts. Part 1 provides a perspective on the importance of ML in process systems engineering and lays down the basic foundations of ML. Part 2 provides in-detail presentation of classical ML techniques and has been written keeping in mind the various characteristics of industrial process systems. Part 3 is focused on artificial neural networks and deep learning. Part 4 covers the important topic of deploying ML solutions over web and shows how to build a production-ready process monitoring web application. Broadly, the book covers the following: Varied applications of ML in process industry Fundamentals of machine learning workflow Practical methodologies for pre-processing industrial data Classical ML methods and their application for process monitoring, fault diagnosis, and soft sensing Deep learning and its application for predictive maintenance Reinforcement learning and its application for process control Deployment of ML solution over web