Author: Palle Thoft-Christensen
Publisher: Springer Science & Business Media
ISBN: 3642827640
Category : Technology & Engineering
Languages : en
Pages : 346
Book Description
During the last two decades more and more universities offer courses on modern structural reliability theory. A course on structural reliability theory is now a natural part of the curri culum for mechanical and structural engineering students. As a result of this, a number of textbooks have been published in this decade. In PlOst of these books it is shown how the reliability of single structural members can be evaluated in a rational way. The methods used are usually so-called level 2 methods, i. e. methods involving certain approximate iter ative calculations to obtain an approximate value of the probability of failure of the struc tural members. In these methods the joint probability distribution of relevant variables (re sistance variables, loads, etc. ) is simplified and the failure criteria are idealized in such a way that the reliability calculations can be performed without an unreasonable amount of work. In spite of the approximations and idealizations made it is believed that a rational treatment of uncertainties in structural engineering can be obtained by level 2 methods. Usually, in sufficient data are at hand to make a more advanced estimate of the reliability of a struc tural member. It has been recognized for many years that a fully satisfactory estimate of the reliability of a structure must be based on a systems approach. In some situations it is sufficient to estimate the reliability of the individual structural members of a structural system.
Application of Structural Systems Reliability Theory
Author: Palle Thoft-Christensen
Publisher: Springer Science & Business Media
ISBN: 3642827640
Category : Technology & Engineering
Languages : en
Pages : 346
Book Description
During the last two decades more and more universities offer courses on modern structural reliability theory. A course on structural reliability theory is now a natural part of the curri culum for mechanical and structural engineering students. As a result of this, a number of textbooks have been published in this decade. In PlOst of these books it is shown how the reliability of single structural members can be evaluated in a rational way. The methods used are usually so-called level 2 methods, i. e. methods involving certain approximate iter ative calculations to obtain an approximate value of the probability of failure of the struc tural members. In these methods the joint probability distribution of relevant variables (re sistance variables, loads, etc. ) is simplified and the failure criteria are idealized in such a way that the reliability calculations can be performed without an unreasonable amount of work. In spite of the approximations and idealizations made it is believed that a rational treatment of uncertainties in structural engineering can be obtained by level 2 methods. Usually, in sufficient data are at hand to make a more advanced estimate of the reliability of a struc tural member. It has been recognized for many years that a fully satisfactory estimate of the reliability of a structure must be based on a systems approach. In some situations it is sufficient to estimate the reliability of the individual structural members of a structural system.
Publisher: Springer Science & Business Media
ISBN: 3642827640
Category : Technology & Engineering
Languages : en
Pages : 346
Book Description
During the last two decades more and more universities offer courses on modern structural reliability theory. A course on structural reliability theory is now a natural part of the curri culum for mechanical and structural engineering students. As a result of this, a number of textbooks have been published in this decade. In PlOst of these books it is shown how the reliability of single structural members can be evaluated in a rational way. The methods used are usually so-called level 2 methods, i. e. methods involving certain approximate iter ative calculations to obtain an approximate value of the probability of failure of the struc tural members. In these methods the joint probability distribution of relevant variables (re sistance variables, loads, etc. ) is simplified and the failure criteria are idealized in such a way that the reliability calculations can be performed without an unreasonable amount of work. In spite of the approximations and idealizations made it is believed that a rational treatment of uncertainties in structural engineering can be obtained by level 2 methods. Usually, in sufficient data are at hand to make a more advanced estimate of the reliability of a struc tural member. It has been recognized for many years that a fully satisfactory estimate of the reliability of a structure must be based on a systems approach. In some situations it is sufficient to estimate the reliability of the individual structural members of a structural system.
Structural Reliability Theory and Its Applications
Author: P. Thoft-Cristensen
Publisher: Springer Science & Business Media
ISBN: 3642686974
Category : Technology & Engineering
Languages : en
Pages : 267
Book Description
Structural reliability theory is concerned with the rational treatment of uncertainties in struc tural engineering and with the methods for assessing the safety and serviceability of civil en gineering and other structures. It is a subject which has grown rapidly during the last decade and has evolved from being a topic for academic research to a set of well-developed or develop ing methodologies with a wide range of practical applications. Uncertainties exist in most areas of civil and structural engineeri'1.g and rational design decisions cannot be made without modelling them and taking them into account. Many structural en gineers are shielded from having to think about such problems, at least when designing simple structures, because of the prescriptive and essentially deterministic nature of most codes of practice. This is an undesirable situation. Most loads and other structural design parameters are rarely known with certainty and should be regarded as random variables or stochastic processes, even if in design calculations they are eventually treated as deterministic. Some problems such as the analysis of load combinations cannot even be formulated without recourse to probabilistic reasoning.
Publisher: Springer Science & Business Media
ISBN: 3642686974
Category : Technology & Engineering
Languages : en
Pages : 267
Book Description
Structural reliability theory is concerned with the rational treatment of uncertainties in struc tural engineering and with the methods for assessing the safety and serviceability of civil en gineering and other structures. It is a subject which has grown rapidly during the last decade and has evolved from being a topic for academic research to a set of well-developed or develop ing methodologies with a wide range of practical applications. Uncertainties exist in most areas of civil and structural engineeri'1.g and rational design decisions cannot be made without modelling them and taking them into account. Many structural en gineers are shielded from having to think about such problems, at least when designing simple structures, because of the prescriptive and essentially deterministic nature of most codes of practice. This is an undesirable situation. Most loads and other structural design parameters are rarely known with certainty and should be regarded as random variables or stochastic processes, even if in design calculations they are eventually treated as deterministic. Some problems such as the analysis of load combinations cannot even be formulated without recourse to probabilistic reasoning.
Structural and System Reliability
Author: Armen Der Kiureghian
Publisher: Cambridge University Press
ISBN: 1108998437
Category : Science
Languages : en
Pages : 610
Book Description
Based on material taught at the University of California, Berkeley, this textbook offers a modern, rigorous and comprehensive treatment of the methods of structural and system reliability analysis. It covers the first- and second-order reliability methods for components and systems, simulation methods, time- and space-variant reliability, and Bayesian parameter estimation and reliability updating. It also presents more advanced, state-of-the-art topics such as finite-element reliability methods, stochastic structural dynamics, reliability-based optimal design, and Bayesian networks. A wealth of well-designed examples connect theory with practice, with simple examples demonstrating mathematical concepts and larger examples demonstrating their applications. End-of-chapter homework problems are included throughout. Including all necessary background material from probability theory, and accompanied online by a solutions manual and PowerPoint slides for instructors, this is the ideal text for senior undergraduate and graduate students taking courses on structural and system reliability in departments of civil, environmental and mechanical engineering.
Publisher: Cambridge University Press
ISBN: 1108998437
Category : Science
Languages : en
Pages : 610
Book Description
Based on material taught at the University of California, Berkeley, this textbook offers a modern, rigorous and comprehensive treatment of the methods of structural and system reliability analysis. It covers the first- and second-order reliability methods for components and systems, simulation methods, time- and space-variant reliability, and Bayesian parameter estimation and reliability updating. It also presents more advanced, state-of-the-art topics such as finite-element reliability methods, stochastic structural dynamics, reliability-based optimal design, and Bayesian networks. A wealth of well-designed examples connect theory with practice, with simple examples demonstrating mathematical concepts and larger examples demonstrating their applications. End-of-chapter homework problems are included throughout. Including all necessary background material from probability theory, and accompanied online by a solutions manual and PowerPoint slides for instructors, this is the ideal text for senior undergraduate and graduate students taking courses on structural and system reliability in departments of civil, environmental and mechanical engineering.
Reliability and Optimization of Structural Systems
Author: Daniel Straub
Publisher: CRC Press
ISBN: 0203841417
Category : Technology & Engineering
Languages : en
Pages : 259
Book Description
This volume contains 28 papers by renowned international experts on the latest advances in structural reliability methods and applications, engineering risk analysis and decision making, new optimization techniques and various applications in civil engineering. Moreover, several contributions focus on the assessment and optimization of existing str
Publisher: CRC Press
ISBN: 0203841417
Category : Technology & Engineering
Languages : en
Pages : 259
Book Description
This volume contains 28 papers by renowned international experts on the latest advances in structural reliability methods and applications, engineering risk analysis and decision making, new optimization techniques and various applications in civil engineering. Moreover, several contributions focus on the assessment and optimization of existing str
Reliability-based Structural Design
Author: Seung-Kyum Choi
Publisher: Springer Science & Business Media
ISBN: 1846284457
Category : Technology & Engineering
Languages : en
Pages : 309
Book Description
This book provides readers with an understanding of the fundamentals and applications of structural reliability, stochastic finite element method, reliability analysis via stochastic expansion, and optimization under uncertainty. It examines the use of stochastic expansions, including polynomial chaos expansion and Karhunen-Loeve expansion for the reliability analysis of practical engineering problems.
Publisher: Springer Science & Business Media
ISBN: 1846284457
Category : Technology & Engineering
Languages : en
Pages : 309
Book Description
This book provides readers with an understanding of the fundamentals and applications of structural reliability, stochastic finite element method, reliability analysis via stochastic expansion, and optimization under uncertainty. It examines the use of stochastic expansions, including polynomial chaos expansion and Karhunen-Loeve expansion for the reliability analysis of practical engineering problems.
Safety and Reliability. Theory and Applications
Author: Marko Cepin
Publisher: CRC Press
ISBN: 1351809725
Category : Technology & Engineering
Languages : en
Pages : 6847
Book Description
Safety and Reliability – Theory and Applications contains the contributions presented at the 27th European Safety and Reliability Conference (ESREL 2017, Portorož, Slovenia, June 18-22, 2017). The book covers a wide range of topics, including: • Accident and Incident modelling • Economic Analysis in Risk Management • Foundational Issues in Risk Assessment and Management • Human Factors and Human Reliability • Maintenance Modeling and Applications • Mathematical Methods in Reliability and Safety • Prognostics and System Health Management • Resilience Engineering • Risk Assessment • Risk Management • Simulation for Safety and Reliability Analysis • Structural Reliability • System Reliability, and • Uncertainty Analysis. Selected special sessions include contributions on: the Marie Skłodowska-Curie innovative training network in structural safety; risk approaches in insurance and fi nance sectors; dynamic reliability and probabilistic safety assessment; Bayesian and statistical methods, reliability data and testing; oganizational factors and safety culture; software reliability and safety; probabilistic methods applied to power systems; socio-technical-economic systems; advanced safety assessment methodologies: extended Probabilistic Safety Assessment; reliability; availability; maintainability and safety in railways: theory & practice; big data risk analysis and management, and model-based reliability and safety engineering. Safety and Reliability – Theory and Applications will be of interest to professionals and academics working in a wide range of industrial and governmental sectors including: Aeronautics and Aerospace, Automotive Engineering, Civil Engineering, Electrical and Electronic Engineering, Energy Production and Distribution, Environmental Engineering, Information Technology and Telecommunications, Critical Infrastructures, Insurance and Finance, Manufacturing, Marine Industry, Mechanical Engineering, Natural Hazards, Nuclear Engineering, Offshore Oil and Gas, Security and Protection, Transportation, and Policy Making.
Publisher: CRC Press
ISBN: 1351809725
Category : Technology & Engineering
Languages : en
Pages : 6847
Book Description
Safety and Reliability – Theory and Applications contains the contributions presented at the 27th European Safety and Reliability Conference (ESREL 2017, Portorož, Slovenia, June 18-22, 2017). The book covers a wide range of topics, including: • Accident and Incident modelling • Economic Analysis in Risk Management • Foundational Issues in Risk Assessment and Management • Human Factors and Human Reliability • Maintenance Modeling and Applications • Mathematical Methods in Reliability and Safety • Prognostics and System Health Management • Resilience Engineering • Risk Assessment • Risk Management • Simulation for Safety and Reliability Analysis • Structural Reliability • System Reliability, and • Uncertainty Analysis. Selected special sessions include contributions on: the Marie Skłodowska-Curie innovative training network in structural safety; risk approaches in insurance and fi nance sectors; dynamic reliability and probabilistic safety assessment; Bayesian and statistical methods, reliability data and testing; oganizational factors and safety culture; software reliability and safety; probabilistic methods applied to power systems; socio-technical-economic systems; advanced safety assessment methodologies: extended Probabilistic Safety Assessment; reliability; availability; maintainability and safety in railways: theory & practice; big data risk analysis and management, and model-based reliability and safety engineering. Safety and Reliability – Theory and Applications will be of interest to professionals and academics working in a wide range of industrial and governmental sectors including: Aeronautics and Aerospace, Automotive Engineering, Civil Engineering, Electrical and Electronic Engineering, Energy Production and Distribution, Environmental Engineering, Information Technology and Telecommunications, Critical Infrastructures, Insurance and Finance, Manufacturing, Marine Industry, Mechanical Engineering, Natural Hazards, Nuclear Engineering, Offshore Oil and Gas, Security and Protection, Transportation, and Policy Making.
System Reliability Theory
Author: Marvin Rausand
Publisher: John Wiley & Sons
ISBN: 9780471471332
Category : Technology & Engineering
Languages : en
Pages : 668
Book Description
A thoroughly updated and revised look at system reliability theory Since the first edition of this popular text was published nearly a decade ago, new standards have changed the focus of reliability engineering and introduced new concepts and terminology not previously addressed in the engineering literature. Consequently, the Second Edition of System Reliability Theory: Models, Statistical Methods, and Applications has been thoroughly rewritten and updated to meet current standards. To maximize its value as a pedagogical tool, the Second Edition features: Additional chapters on reliability of maintained systems and reliability assessment of safety-critical systems Discussion of basic assessment methods for operational availability and production regularity New concepts and terminology not covered in the first edition Revised sequencing of chapters for better pedagogical structure New problems, examples, and cases for a more applied focus An accompanying Web site with solutions, overheads, and supplementary information With its updated practical focus, incorporation of industry feedback, and many new examples based on real industry problems and data, the Second Edition of this important text should prove to be more useful than ever for students, instructors, and researchers alike.
Publisher: John Wiley & Sons
ISBN: 9780471471332
Category : Technology & Engineering
Languages : en
Pages : 668
Book Description
A thoroughly updated and revised look at system reliability theory Since the first edition of this popular text was published nearly a decade ago, new standards have changed the focus of reliability engineering and introduced new concepts and terminology not previously addressed in the engineering literature. Consequently, the Second Edition of System Reliability Theory: Models, Statistical Methods, and Applications has been thoroughly rewritten and updated to meet current standards. To maximize its value as a pedagogical tool, the Second Edition features: Additional chapters on reliability of maintained systems and reliability assessment of safety-critical systems Discussion of basic assessment methods for operational availability and production regularity New concepts and terminology not covered in the first edition Revised sequencing of chapters for better pedagogical structure New problems, examples, and cases for a more applied focus An accompanying Web site with solutions, overheads, and supplementary information With its updated practical focus, incorporation of industry feedback, and many new examples based on real industry problems and data, the Second Edition of this important text should prove to be more useful than ever for students, instructors, and researchers alike.
Safety and Reliability. Theory and Applications
Author: Marko Cepin
Publisher: CRC Press
ISBN: 1351809733
Category : Technology & Engineering
Languages : en
Pages : 3668
Book Description
Safety and Reliability – Theory and Applications contains the contributions presented at the 27th European Safety and Reliability Conference (ESREL 2017, Portorož, Slovenia, June 18-22, 2017). The book covers a wide range of topics, including: • Accident and Incident modelling • Economic Analysis in Risk Management • Foundational Issues in Risk Assessment and Management • Human Factors and Human Reliability • Maintenance Modeling and Applications • Mathematical Methods in Reliability and Safety • Prognostics and System Health Management • Resilience Engineering • Risk Assessment • Risk Management • Simulation for Safety and Reliability Analysis • Structural Reliability • System Reliability, and • Uncertainty Analysis. Selected special sessions include contributions on: the Marie Skłodowska-Curie innovative training network in structural safety; risk approaches in insurance and fi nance sectors; dynamic reliability and probabilistic safety assessment; Bayesian and statistical methods, reliability data and testing; oganizational factors and safety culture; software reliability and safety; probabilistic methods applied to power systems; socio-technical-economic systems; advanced safety assessment methodologies: extended Probabilistic Safety Assessment; reliability; availability; maintainability and safety in railways: theory & practice; big data risk analysis and management, and model-based reliability and safety engineering. Safety and Reliability – Theory and Applications will be of interest to professionals and academics working in a wide range of industrial and governmental sectors including: Aeronautics and Aerospace, Automotive Engineering, Civil Engineering, Electrical and Electronic Engineering, Energy Production and Distribution, Environmental Engineering, Information Technology and Telecommunications, Critical Infrastructures, Insurance and Finance, Manufacturing, Marine Industry, Mechanical Engineering, Natural Hazards, Nuclear Engineering, Offshore Oil and Gas, Security and Protection, Transportation, and Policy Making.
Publisher: CRC Press
ISBN: 1351809733
Category : Technology & Engineering
Languages : en
Pages : 3668
Book Description
Safety and Reliability – Theory and Applications contains the contributions presented at the 27th European Safety and Reliability Conference (ESREL 2017, Portorož, Slovenia, June 18-22, 2017). The book covers a wide range of topics, including: • Accident and Incident modelling • Economic Analysis in Risk Management • Foundational Issues in Risk Assessment and Management • Human Factors and Human Reliability • Maintenance Modeling and Applications • Mathematical Methods in Reliability and Safety • Prognostics and System Health Management • Resilience Engineering • Risk Assessment • Risk Management • Simulation for Safety and Reliability Analysis • Structural Reliability • System Reliability, and • Uncertainty Analysis. Selected special sessions include contributions on: the Marie Skłodowska-Curie innovative training network in structural safety; risk approaches in insurance and fi nance sectors; dynamic reliability and probabilistic safety assessment; Bayesian and statistical methods, reliability data and testing; oganizational factors and safety culture; software reliability and safety; probabilistic methods applied to power systems; socio-technical-economic systems; advanced safety assessment methodologies: extended Probabilistic Safety Assessment; reliability; availability; maintainability and safety in railways: theory & practice; big data risk analysis and management, and model-based reliability and safety engineering. Safety and Reliability – Theory and Applications will be of interest to professionals and academics working in a wide range of industrial and governmental sectors including: Aeronautics and Aerospace, Automotive Engineering, Civil Engineering, Electrical and Electronic Engineering, Energy Production and Distribution, Environmental Engineering, Information Technology and Telecommunications, Critical Infrastructures, Insurance and Finance, Manufacturing, Marine Industry, Mechanical Engineering, Natural Hazards, Nuclear Engineering, Offshore Oil and Gas, Security and Protection, Transportation, and Policy Making.
Structural Reliability Analysis and Prediction
Author: Robert E. Melchers
Publisher: Wiley
ISBN: 9780471983248
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
Structural reliability has become a discipline of international interest, addressing issues such as the safety of buildings, bridges, towers and other structures. This book addresses the important issue of predicting the safety of structures at the design stage and also the safety of existing, perhaps deteriorating structures. Attention is focused on the development and definition of limit states such as serviceability and ultimate strength, the definition of failure and the various models which might be used to describe strength and loading. Much consideration is given to problem formulation and to the various techniques which can be applied to problem solution. These include the First Order Second Moment method and their derivatives, as well as various Monte Carlo tchniques. Each of these are described in considerable detail and example applications are given. Structural systems are also described, as is the effect of time on reliability estimation, and on the development of design code rules on the basis of limit state principles as under-pinned by probability theory. Furthermore, procedures for the reliability estimation of existing structures are also included. The book emphasises concepts and applications, built up from basic principles and avoids undue mathematical rigour. It presents an accesible and unified account of the theory and techniques for the analysis of the reliability of engineering structures using probability theory. A balanced view of the subject is offered here not only for newcomers, but also for the more specialist reader, such as senior undergraduate and post-graduate students and practising engineers in civil, structural, geotechnical and mechanical engineering.
Publisher: Wiley
ISBN: 9780471983248
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
Structural reliability has become a discipline of international interest, addressing issues such as the safety of buildings, bridges, towers and other structures. This book addresses the important issue of predicting the safety of structures at the design stage and also the safety of existing, perhaps deteriorating structures. Attention is focused on the development and definition of limit states such as serviceability and ultimate strength, the definition of failure and the various models which might be used to describe strength and loading. Much consideration is given to problem formulation and to the various techniques which can be applied to problem solution. These include the First Order Second Moment method and their derivatives, as well as various Monte Carlo tchniques. Each of these are described in considerable detail and example applications are given. Structural systems are also described, as is the effect of time on reliability estimation, and on the development of design code rules on the basis of limit state principles as under-pinned by probability theory. Furthermore, procedures for the reliability estimation of existing structures are also included. The book emphasises concepts and applications, built up from basic principles and avoids undue mathematical rigour. It presents an accesible and unified account of the theory and techniques for the analysis of the reliability of engineering structures using probability theory. A balanced view of the subject is offered here not only for newcomers, but also for the more specialist reader, such as senior undergraduate and post-graduate students and practising engineers in civil, structural, geotechnical and mechanical engineering.
Reliability of Structures, Second Edition
Author: Andrzej S. Nowak
Publisher: CRC Press
ISBN: 0415675758
Category : Technology & Engineering
Languages : en
Pages : 411
Book Description
Reliability of Structures enables both students and practising engineers to appreciate how to value and handle reliability as an important dimension of structural design. It discusses the concepts of limit states and limit state functions, and presents methodologies for calculating reliability indices and calibrating partial safety factors. It also supplies information on the probability distributions and parameters used to characterize both applied loads and member resistances. This revised and extended second edition contains more discussions of US and international codes and the issues underlying their development. There is significant revision and expansion of the discussion on Monte Carlo simulation, along with more examples. The book serves as a textbook for a one-semester course for advanced undergraduates or graduate students, or as a reference and guide to consulting structural engineers. Its emphasis is on the practical applications of structural reliability theory rather than the theory itself. Consequently, probability theory is treated as a tool, and enough is given to show the novice reader how to calculate reliability. Some background in structural engineering and structural mechanics is assumed. A solutions manual is available upon qualifying course adoption.
Publisher: CRC Press
ISBN: 0415675758
Category : Technology & Engineering
Languages : en
Pages : 411
Book Description
Reliability of Structures enables both students and practising engineers to appreciate how to value and handle reliability as an important dimension of structural design. It discusses the concepts of limit states and limit state functions, and presents methodologies for calculating reliability indices and calibrating partial safety factors. It also supplies information on the probability distributions and parameters used to characterize both applied loads and member resistances. This revised and extended second edition contains more discussions of US and international codes and the issues underlying their development. There is significant revision and expansion of the discussion on Monte Carlo simulation, along with more examples. The book serves as a textbook for a one-semester course for advanced undergraduates or graduate students, or as a reference and guide to consulting structural engineers. Its emphasis is on the practical applications of structural reliability theory rather than the theory itself. Consequently, probability theory is treated as a tool, and enough is given to show the novice reader how to calculate reliability. Some background in structural engineering and structural mechanics is assumed. A solutions manual is available upon qualifying course adoption.