Author: Anil Kumar
Publisher: CRC Press
ISBN: 100087219X
Category : Computers
Languages : en
Pages : 178
Book Description
This book elaborates fuzzy machine and deep learning models for single class mapping from multi-sensor, multi-temporal remote sensing images while handling mixed pixels and noise. It also covers the ways of pre-processing and spectral dimensionality reduction of temporal data. Further, it discusses the ‘individual sample as mean’ training approach to handle heterogeneity within a class. The appendix section of the book includes case studies such as mapping crop type, forest species, and stubble burnt paddy fields. Key features: Focuses on use of multi-sensor, multi-temporal data while handling spectral overlap between classes Discusses range of fuzzy/deep learning models capable to extract specific single class and separates noise Describes pre-processing while using spectral, textural, CBSI indices, and back scatter coefficient/Radar Vegetation Index (RVI) Discusses the role of training data to handle the heterogeneity within a class Supports multi-sensor and multi-temporal data processing through in-house SMIC software Includes case studies and practical applications for single class mapping This book is intended for graduate/postgraduate students, research scholars, and professionals working in environmental, geography, computer sciences, remote sensing, geoinformatics, forestry, agriculture, post-disaster, urban transition studies, and other related areas.
Multi-Sensor and Multi-Temporal Remote Sensing
Author: Anil Kumar
Publisher: CRC Press
ISBN: 100087219X
Category : Computers
Languages : en
Pages : 178
Book Description
This book elaborates fuzzy machine and deep learning models for single class mapping from multi-sensor, multi-temporal remote sensing images while handling mixed pixels and noise. It also covers the ways of pre-processing and spectral dimensionality reduction of temporal data. Further, it discusses the ‘individual sample as mean’ training approach to handle heterogeneity within a class. The appendix section of the book includes case studies such as mapping crop type, forest species, and stubble burnt paddy fields. Key features: Focuses on use of multi-sensor, multi-temporal data while handling spectral overlap between classes Discusses range of fuzzy/deep learning models capable to extract specific single class and separates noise Describes pre-processing while using spectral, textural, CBSI indices, and back scatter coefficient/Radar Vegetation Index (RVI) Discusses the role of training data to handle the heterogeneity within a class Supports multi-sensor and multi-temporal data processing through in-house SMIC software Includes case studies and practical applications for single class mapping This book is intended for graduate/postgraduate students, research scholars, and professionals working in environmental, geography, computer sciences, remote sensing, geoinformatics, forestry, agriculture, post-disaster, urban transition studies, and other related areas.
Publisher: CRC Press
ISBN: 100087219X
Category : Computers
Languages : en
Pages : 178
Book Description
This book elaborates fuzzy machine and deep learning models for single class mapping from multi-sensor, multi-temporal remote sensing images while handling mixed pixels and noise. It also covers the ways of pre-processing and spectral dimensionality reduction of temporal data. Further, it discusses the ‘individual sample as mean’ training approach to handle heterogeneity within a class. The appendix section of the book includes case studies such as mapping crop type, forest species, and stubble burnt paddy fields. Key features: Focuses on use of multi-sensor, multi-temporal data while handling spectral overlap between classes Discusses range of fuzzy/deep learning models capable to extract specific single class and separates noise Describes pre-processing while using spectral, textural, CBSI indices, and back scatter coefficient/Radar Vegetation Index (RVI) Discusses the role of training data to handle the heterogeneity within a class Supports multi-sensor and multi-temporal data processing through in-house SMIC software Includes case studies and practical applications for single class mapping This book is intended for graduate/postgraduate students, research scholars, and professionals working in environmental, geography, computer sciences, remote sensing, geoinformatics, forestry, agriculture, post-disaster, urban transition studies, and other related areas.
Multitemporal Remote Sensing
Author: Yifang Ban
Publisher: Springer
ISBN: 331947037X
Category : Technology & Engineering
Languages : en
Pages : 448
Book Description
Written by world renowned scientists, this book provides an excellent overview of a wide array of methods and techniques for the processing and analysis of multitemporal remotely sensed images. These methods and techniques include change detection, multitemporal data fusion, coarse-resolution time series processing, and interferometric SAR multitemporal processing, among others. A broad range of multitemporal datasets are used in their methodology demonstrations and application examples, including multispectral, hyperspectral, SAR and passive microwave data. This book features a variety of application examples covering both land and aquatic environments. Land applications include urban, agriculture, habitat disturbance, vegetation dynamics, soil moisture, land surface albedo, land surface temperature, glacier and disaster recovery. Aquatic applications include monitoring water quality, water surface areas and water fluctuation in wetland areas, spatial distribution patterns and temporal fluctuation trends of global land surface water, as well as evaluation of water quality in several coastal and marine environments. This book will help scientists, practitioners, students gain a greater understanding of how multitemporal remote sensing could be effectively used to monitor our changing planet at local, regional, and global scales.
Publisher: Springer
ISBN: 331947037X
Category : Technology & Engineering
Languages : en
Pages : 448
Book Description
Written by world renowned scientists, this book provides an excellent overview of a wide array of methods and techniques for the processing and analysis of multitemporal remotely sensed images. These methods and techniques include change detection, multitemporal data fusion, coarse-resolution time series processing, and interferometric SAR multitemporal processing, among others. A broad range of multitemporal datasets are used in their methodology demonstrations and application examples, including multispectral, hyperspectral, SAR and passive microwave data. This book features a variety of application examples covering both land and aquatic environments. Land applications include urban, agriculture, habitat disturbance, vegetation dynamics, soil moisture, land surface albedo, land surface temperature, glacier and disaster recovery. Aquatic applications include monitoring water quality, water surface areas and water fluctuation in wetland areas, spatial distribution patterns and temporal fluctuation trends of global land surface water, as well as evaluation of water quality in several coastal and marine environments. This book will help scientists, practitioners, students gain a greater understanding of how multitemporal remote sensing could be effectively used to monitor our changing planet at local, regional, and global scales.
Computational Science and Its Applications – ICCSA 2024 Workshops
Author: Osvaldo Gervasi
Publisher: Springer Nature
ISBN: 3031652827
Category :
Languages : en
Pages : 487
Book Description
Publisher: Springer Nature
ISBN: 3031652827
Category :
Languages : en
Pages : 487
Book Description
Analysis Of Multi-temporal Remote Sensing Images - Proceedings Of The First International Workshop On Multitemp 2001
Author: Lorenzo Bruzzone
Publisher: World Scientific
ISBN: 981448833X
Category : Technology & Engineering
Languages : en
Pages : 455
Book Description
The development of effective methodologies for the analysis of multi-temporal data is one of the most important and challenging issues that the remote sensing community will face in the next few years. The relevance and timeliness of this issue are directly related to the ever-increasing quantity of multi-temporal data provided by the numerous remote sensing satellites that orbit our planet. The synergistic use of multi-temporal remote sensing data and advanced analysis methodologies results in the possibility of solving complex problems related to the monitoring of the Earth's surface and atmosphere.This book brings together the methodological aspects of multi-temporal remote sensing image analysis, real applications and end-user requirements, presenting the state of the art in this field and contributing to the definition of common research priorities. Researchers and graduate students in the fields of remote sensing, image analysis, and environmental monitoring will appreciate the interdisciplinary approach thanks to the articles written by experts from different scientific communities.
Publisher: World Scientific
ISBN: 981448833X
Category : Technology & Engineering
Languages : en
Pages : 455
Book Description
The development of effective methodologies for the analysis of multi-temporal data is one of the most important and challenging issues that the remote sensing community will face in the next few years. The relevance and timeliness of this issue are directly related to the ever-increasing quantity of multi-temporal data provided by the numerous remote sensing satellites that orbit our planet. The synergistic use of multi-temporal remote sensing data and advanced analysis methodologies results in the possibility of solving complex problems related to the monitoring of the Earth's surface and atmosphere.This book brings together the methodological aspects of multi-temporal remote sensing image analysis, real applications and end-user requirements, presenting the state of the art in this field and contributing to the definition of common research priorities. Researchers and graduate students in the fields of remote sensing, image analysis, and environmental monitoring will appreciate the interdisciplinary approach thanks to the articles written by experts from different scientific communities.
Advanced Applications in Remote Sensing of Agricultural Crops and Natural Vegetation
Author: Prasad S. Thenkabail
Publisher: CRC Press
ISBN: 0429775164
Category : Science
Languages : en
Pages : 385
Book Description
Written by leading global experts, including pioneers in the field, the four-volume set on Hyperspectral Remote Sensing of Vegetation, Second Edition, reviews existing state-of-the-art knowledge, highlights advances made in different areas, and provides guidance for the appropriate use of hyperspectral data in the study and management of agricultural crops and natural vegetation. Volume IV, Advanced Applications in Remote Sensing of Agricultural Crops and Natural Vegetation discusses the use of hyperspectral or imaging spectroscopy data in numerous specific and advanced applications, such as forest management, precision farming, managing invasive species, and local to global land cover change detection. It emphasizes the importance of hyperspectral remote sensing tools for studying vegetation processes and functions as well as the appropriate use of hyperspectral data for vegetation management practices. The concluding chapter provides readers with useful guidance on the highlights and essence of Volume IV through the editors’ perspective. Key Features of Volume IV: Guides readers to harness the capabilities of the most recent advances in applying hyperspectral remote sensing technology to the study of terrestrial vegetation. Includes specific applications on agriculture, crop management practices, study of crop stress and diseases, crop characteristics based on inputs (e.g., nitrogen, irrigation), study of vegetation impacted by heavy metals, gross and net primary productivity studies, light use efficiency studies, crop water use and actual evapotranspiration studies, phenology monitoring, land use and land cover studies, global change studies, plant species detection, wetland and forest characterization and mapping, crop productivity and crop water productivity mapping, and modeling. Encompasses hyperspectral or imaging spectroscopy data in narrow wavebands used across visible, red-edge, near-infrared, far-infrared, shortwave infrared, and thermal portions of the spectrum. Explains the implementation of hyperspectral remote sensing data processing mechanisms in a standard, fast, and efficient manner for their applications. Discusses cloud computing to overcome hyperspectral remote sensing massive big data challenges. Provides hyperspectral analysis of rocky surfaces on the earth and other planetary systems.
Publisher: CRC Press
ISBN: 0429775164
Category : Science
Languages : en
Pages : 385
Book Description
Written by leading global experts, including pioneers in the field, the four-volume set on Hyperspectral Remote Sensing of Vegetation, Second Edition, reviews existing state-of-the-art knowledge, highlights advances made in different areas, and provides guidance for the appropriate use of hyperspectral data in the study and management of agricultural crops and natural vegetation. Volume IV, Advanced Applications in Remote Sensing of Agricultural Crops and Natural Vegetation discusses the use of hyperspectral or imaging spectroscopy data in numerous specific and advanced applications, such as forest management, precision farming, managing invasive species, and local to global land cover change detection. It emphasizes the importance of hyperspectral remote sensing tools for studying vegetation processes and functions as well as the appropriate use of hyperspectral data for vegetation management practices. The concluding chapter provides readers with useful guidance on the highlights and essence of Volume IV through the editors’ perspective. Key Features of Volume IV: Guides readers to harness the capabilities of the most recent advances in applying hyperspectral remote sensing technology to the study of terrestrial vegetation. Includes specific applications on agriculture, crop management practices, study of crop stress and diseases, crop characteristics based on inputs (e.g., nitrogen, irrigation), study of vegetation impacted by heavy metals, gross and net primary productivity studies, light use efficiency studies, crop water use and actual evapotranspiration studies, phenology monitoring, land use and land cover studies, global change studies, plant species detection, wetland and forest characterization and mapping, crop productivity and crop water productivity mapping, and modeling. Encompasses hyperspectral or imaging spectroscopy data in narrow wavebands used across visible, red-edge, near-infrared, far-infrared, shortwave infrared, and thermal portions of the spectrum. Explains the implementation of hyperspectral remote sensing data processing mechanisms in a standard, fast, and efficient manner for their applications. Discusses cloud computing to overcome hyperspectral remote sensing massive big data challenges. Provides hyperspectral analysis of rocky surfaces on the earth and other planetary systems.
Multitemporal Earth Observation Image Analysis
Author: Clément Mallet
Publisher: John Wiley & Sons
ISBN: 1789451760
Category : Technology & Engineering
Languages : en
Pages : 276
Book Description
Earth observation has witnessed a unique paradigm change in the last decade with a diverse and ever-growing number of data sources. Among them, time series of remote sensing images has proven to be invaluable for numerous environmental and climate studies. Multitemporal Earth Observation Image Analysis provides illustrations of recent methodological advances in data processing and information extraction from imagery, with an emphasis on the temporal dimension uncovered either by recent satellite constellations (in particular the Sentinels from the European Copernicus programme) or archival aerial images available in national archives. The book shows how complementary data sources can be efficiently used, how spatial and temporal information can be leveraged for biophysical parameter estimation, classification of land surfaces and object tracking, as well as how standard machine learning and state-of-the-art deep learning solutions can solve complex problems with real-world applications.
Publisher: John Wiley & Sons
ISBN: 1789451760
Category : Technology & Engineering
Languages : en
Pages : 276
Book Description
Earth observation has witnessed a unique paradigm change in the last decade with a diverse and ever-growing number of data sources. Among them, time series of remote sensing images has proven to be invaluable for numerous environmental and climate studies. Multitemporal Earth Observation Image Analysis provides illustrations of recent methodological advances in data processing and information extraction from imagery, with an emphasis on the temporal dimension uncovered either by recent satellite constellations (in particular the Sentinels from the European Copernicus programme) or archival aerial images available in national archives. The book shows how complementary data sources can be efficiently used, how spatial and temporal information can be leveraged for biophysical parameter estimation, classification of land surfaces and object tracking, as well as how standard machine learning and state-of-the-art deep learning solutions can solve complex problems with real-world applications.
Signal and Image Processing for Remote Sensing
Author: C.H. Chen
Publisher: CRC Press
ISBN: 1420003135
Category : Technology & Engineering
Languages : en
Pages : 691
Book Description
Most data from satellites are in image form, thus most books in the remote sensing field deal exclusively with image processing. However, signal processing can contribute significantly in extracting information from the remotely sensed waveforms or time series data. Pioneering the combination of the two processes, Signal and Image Processing for Re
Publisher: CRC Press
ISBN: 1420003135
Category : Technology & Engineering
Languages : en
Pages : 691
Book Description
Most data from satellites are in image form, thus most books in the remote sensing field deal exclusively with image processing. However, signal processing can contribute significantly in extracting information from the remotely sensed waveforms or time series data. Pioneering the combination of the two processes, Signal and Image Processing for Re
Proceedings of the First International Workshop on the Analysis of Multi-temporal Remote Sensing Images
Author: Lorenzo Bruzzone
Publisher: World Scientific
ISBN: 9810249551
Category : Technology & Engineering
Languages : en
Pages : 455
Book Description
The development of effective methodologies for the analysis of multi-temporal data is one of the most important and challenging issues that the remote sensing community will face in the next few years. The importance and timeliness of this issue are directly related to the ever-increasing quantity of multi-temporal data provided by the numerous remote sensing satellites that orbit our planet. The synergistic use of multi-temporal remote sensing data and advanced analysis methodologies results in the possibility of solving complex problems related to the monitoring of the Earth's surface and atmosphere. This book brings together the methodological aspects of multi-temporal remote sensing image analysis, real applications and end-user requirements, presenting the state of the art in this field and contributing to the definition of common research priorities. Researchers and graduate students in the fields of environmental monitoring, remote sensing image analysis and pattern recognition will appreciate the interdisciplinary approach thanks to the articles written by experts from different scientific communities.
Publisher: World Scientific
ISBN: 9810249551
Category : Technology & Engineering
Languages : en
Pages : 455
Book Description
The development of effective methodologies for the analysis of multi-temporal data is one of the most important and challenging issues that the remote sensing community will face in the next few years. The importance and timeliness of this issue are directly related to the ever-increasing quantity of multi-temporal data provided by the numerous remote sensing satellites that orbit our planet. The synergistic use of multi-temporal remote sensing data and advanced analysis methodologies results in the possibility of solving complex problems related to the monitoring of the Earth's surface and atmosphere. This book brings together the methodological aspects of multi-temporal remote sensing image analysis, real applications and end-user requirements, presenting the state of the art in this field and contributing to the definition of common research priorities. Researchers and graduate students in the fields of environmental monitoring, remote sensing image analysis and pattern recognition will appreciate the interdisciplinary approach thanks to the articles written by experts from different scientific communities.
Evaluation of the Use of Remote-sensing Data to Identify Crop Types and Estimate Irrigated Acreage, Uvalde and Medina Counties, Texas, 1989
Author: Lee H. Raymond
Publisher:
ISBN:
Category : Field crops
Languages : en
Pages : 36
Book Description
Publisher:
ISBN:
Category : Field crops
Languages : en
Pages : 36
Book Description
Recent Advances in Image Restoration with Applications to Real World Problems
Author: Chiman Kwan
Publisher: BoD – Books on Demand
ISBN: 1839683554
Category : Computers
Languages : en
Pages : 180
Book Description
In the past few decades, imaging hardware has improved tremendously in terms of resolution, making widespread usage of images in many diverse applications on Earth and planetary missions. However, practical issues associated with image acquisition are still affecting image quality. Some of these issues such as blurring, measurement noise, mosaicing artifacts, low spatial or spectral resolution, etc. can seriously affect the accuracy of the aforementioned applications. This book intends to provide the reader with a glimpse of the latest developments and recent advances in image restoration, which includes image super-resolution, image fusion to enhance spatial, spectral resolution, and temporal resolutions, and the generation of synthetic images using deep learning techniques. Some practical applications are also included.
Publisher: BoD – Books on Demand
ISBN: 1839683554
Category : Computers
Languages : en
Pages : 180
Book Description
In the past few decades, imaging hardware has improved tremendously in terms of resolution, making widespread usage of images in many diverse applications on Earth and planetary missions. However, practical issues associated with image acquisition are still affecting image quality. Some of these issues such as blurring, measurement noise, mosaicing artifacts, low spatial or spectral resolution, etc. can seriously affect the accuracy of the aforementioned applications. This book intends to provide the reader with a glimpse of the latest developments and recent advances in image restoration, which includes image super-resolution, image fusion to enhance spatial, spectral resolution, and temporal resolutions, and the generation of synthetic images using deep learning techniques. Some practical applications are also included.