Author: M. Crampin
Publisher: Cambridge University Press
ISBN: 9780521231909
Category : Mathematics
Languages : en
Pages : 408
Book Description
An introduction to geometrical topics used in applied mathematics and theoretical physics.
Applicable Differential Geometry
Author: M. Crampin
Publisher: Cambridge University Press
ISBN: 9780521231909
Category : Mathematics
Languages : en
Pages : 408
Book Description
An introduction to geometrical topics used in applied mathematics and theoretical physics.
Publisher: Cambridge University Press
ISBN: 9780521231909
Category : Mathematics
Languages : en
Pages : 408
Book Description
An introduction to geometrical topics used in applied mathematics and theoretical physics.
Applied Differential Geometry
Author: William L. Burke
Publisher: Cambridge University Press
ISBN: 9780521269292
Category : Mathematics
Languages : en
Pages : 440
Book Description
This is a self-contained introductory textbook on the calculus of differential forms and modern differential geometry. The intended audience is physicists, so the author emphasises applications and geometrical reasoning in order to give results and concepts a precise but intuitive meaning without getting bogged down in analysis. The large number of diagrams helps elucidate the fundamental ideas. Mathematical topics covered include differentiable manifolds, differential forms and twisted forms, the Hodge star operator, exterior differential systems and symplectic geometry. All of the mathematics is motivated and illustrated by useful physical examples.
Publisher: Cambridge University Press
ISBN: 9780521269292
Category : Mathematics
Languages : en
Pages : 440
Book Description
This is a self-contained introductory textbook on the calculus of differential forms and modern differential geometry. The intended audience is physicists, so the author emphasises applications and geometrical reasoning in order to give results and concepts a precise but intuitive meaning without getting bogged down in analysis. The large number of diagrams helps elucidate the fundamental ideas. Mathematical topics covered include differentiable manifolds, differential forms and twisted forms, the Hodge star operator, exterior differential systems and symplectic geometry. All of the mathematics is motivated and illustrated by useful physical examples.
Geometry and Its Applications
Author: Walter A. Meyer
Publisher: Elsevier
ISBN: 0080478034
Category : Mathematics
Languages : en
Pages : 560
Book Description
Meyer's Geometry and Its Applications, Second Edition, combines traditional geometry with current ideas to present a modern approach that is grounded in real-world applications. It balances the deductive approach with discovery learning, and introduces axiomatic, Euclidean geometry, non-Euclidean geometry, and transformational geometry. The text integrates applications and examples throughout and includes historical notes in many chapters. The Second Edition of Geometry and Its Applications is a significant text for any college or university that focuses on geometry's usefulness in other disciplines. It is especially appropriate for engineering and science majors, as well as future mathematics teachers. - Realistic applications integrated throughout the text, including (but not limited to): - Symmetries of artistic patterns - Physics - Robotics - Computer vision - Computer graphics - Stability of architectural structures - Molecular biology - Medicine - Pattern recognition - Historical notes included in many chapters
Publisher: Elsevier
ISBN: 0080478034
Category : Mathematics
Languages : en
Pages : 560
Book Description
Meyer's Geometry and Its Applications, Second Edition, combines traditional geometry with current ideas to present a modern approach that is grounded in real-world applications. It balances the deductive approach with discovery learning, and introduces axiomatic, Euclidean geometry, non-Euclidean geometry, and transformational geometry. The text integrates applications and examples throughout and includes historical notes in many chapters. The Second Edition of Geometry and Its Applications is a significant text for any college or university that focuses on geometry's usefulness in other disciplines. It is especially appropriate for engineering and science majors, as well as future mathematics teachers. - Realistic applications integrated throughout the text, including (but not limited to): - Symmetries of artistic patterns - Physics - Robotics - Computer vision - Computer graphics - Stability of architectural structures - Molecular biology - Medicine - Pattern recognition - Historical notes included in many chapters
Applied Computational Geometry. Towards Geometric Engineering
Author: Ming C. Lin
Publisher: Springer Science & Business Media
ISBN: 9783540617853
Category : Computers
Languages : en
Pages : 244
Book Description
Content Description #Anthology selected from contributions to the First ACM Workshop on Applied Computational Geometry.#Includes bibliographical references and index.
Publisher: Springer Science & Business Media
ISBN: 9783540617853
Category : Computers
Languages : en
Pages : 244
Book Description
Content Description #Anthology selected from contributions to the First ACM Workshop on Applied Computational Geometry.#Includes bibliographical references and index.
Geometric Methods and Applications
Author: Jean Gallier
Publisher: Springer Science & Business Media
ISBN: 1461301378
Category : Mathematics
Languages : en
Pages : 584
Book Description
As an introduction to fundamental geometric concepts and tools needed for solving problems of a geometric nature using a computer, this book fills the gap between standard geometry books, which are primarily theoretical, and applied books on computer graphics, computer vision, or robotics that do not cover the underlying geometric concepts in detail. Gallier offers an introduction to affine, projective, computational, and Euclidean geometry, basics of differential geometry and Lie groups, and explores many of the practical applications of geometry. Some of these include computer vision, efficient communication, error correcting codes, cryptography, motion interpolation, and robot kinematics. This comprehensive text covers most of the geometric background needed for conducting research in computer graphics, geometric modeling, computer vision, and robotics and as such will be of interest to a wide audience including computer scientists, mathematicians, and engineers.
Publisher: Springer Science & Business Media
ISBN: 1461301378
Category : Mathematics
Languages : en
Pages : 584
Book Description
As an introduction to fundamental geometric concepts and tools needed for solving problems of a geometric nature using a computer, this book fills the gap between standard geometry books, which are primarily theoretical, and applied books on computer graphics, computer vision, or robotics that do not cover the underlying geometric concepts in detail. Gallier offers an introduction to affine, projective, computational, and Euclidean geometry, basics of differential geometry and Lie groups, and explores many of the practical applications of geometry. Some of these include computer vision, efficient communication, error correcting codes, cryptography, motion interpolation, and robot kinematics. This comprehensive text covers most of the geometric background needed for conducting research in computer graphics, geometric modeling, computer vision, and robotics and as such will be of interest to a wide audience including computer scientists, mathematicians, and engineers.
Geometry, Lie Theory and Applications
Author: Sigbjørn Hervik
Publisher: Springer Nature
ISBN: 3030812960
Category : Mathematics
Languages : en
Pages : 337
Book Description
This book consists of contributions from the participants of the Abel Symposium 2019 held in Ålesund, Norway. It was centered about applications of the ideas of symmetry and invariance, including equivalence and deformation theory of geometric structures, classification of differential invariants and invariant differential operators, integrability analysis of equations of mathematical physics, progress in parabolic geometry and mathematical aspects of general relativity. The chapters are written by leading international researchers, and consist of both survey and research articles. The book gives the reader an insight into the current research in differential geometry and Lie theory, as well as applications of these topics, in particular to general relativity and string theory.
Publisher: Springer Nature
ISBN: 3030812960
Category : Mathematics
Languages : en
Pages : 337
Book Description
This book consists of contributions from the participants of the Abel Symposium 2019 held in Ålesund, Norway. It was centered about applications of the ideas of symmetry and invariance, including equivalence and deformation theory of geometric structures, classification of differential invariants and invariant differential operators, integrability analysis of equations of mathematical physics, progress in parabolic geometry and mathematical aspects of general relativity. The chapters are written by leading international researchers, and consist of both survey and research articles. The book gives the reader an insight into the current research in differential geometry and Lie theory, as well as applications of these topics, in particular to general relativity and string theory.
Applications of Contact Geometry and Topology in Physics
Author: Arkady Leonidovich Kholodenko
Publisher: World Scientific
ISBN: 9814412090
Category : Mathematics
Languages : en
Pages : 492
Book Description
Although contact geometry and topology is briefly discussed in V I Arnol''d''s book Mathematical Methods of Classical Mechanics (Springer-Verlag, 1989, 2nd edition), it still remains a domain of research in pure mathematics, e.g. see the recent monograph by H Geiges An Introduction to Contact Topology (Cambridge U Press, 2008). Some attempts to use contact geometry in physics were made in the monograph Contact Geometry and Nonlinear Differential Equations (Cambridge U Press, 2007). Unfortunately, even the excellent style of this monograph is not sufficient to attract the attention of the physics community to this type of problems. This book is the first serious attempt to change the existing status quo. In it we demonstrate that, in fact, all branches of theoretical physics can be rewritten in the language of contact geometry and topology: from mechanics, thermodynamics and electrodynamics to optics, gauge fields and gravity; from physics of liquid crystals to quantum mechanics and quantum computers, etc. The book is written in the style of famous Landau-Lifshitz (L-L) multivolume course in theoretical physics. This means that its readers are expected to have solid background in theoretical physics (at least at the level of the L-L course). No prior knowledge of specialized mathematics is required. All needed new mathematics is given in the context of discussed physical problems. As in the L-L course some problems/exercises are formulated along the way and, again as in the L-L course, these are always supplemented by either solutions or by hints (with exact references). Unlike the L-L course, though, some definitions, theorems, and remarks are also presented. This is done with the purpose of stimulating the interest of our readers in deeper study of subject matters discussed in the text.
Publisher: World Scientific
ISBN: 9814412090
Category : Mathematics
Languages : en
Pages : 492
Book Description
Although contact geometry and topology is briefly discussed in V I Arnol''d''s book Mathematical Methods of Classical Mechanics (Springer-Verlag, 1989, 2nd edition), it still remains a domain of research in pure mathematics, e.g. see the recent monograph by H Geiges An Introduction to Contact Topology (Cambridge U Press, 2008). Some attempts to use contact geometry in physics were made in the monograph Contact Geometry and Nonlinear Differential Equations (Cambridge U Press, 2007). Unfortunately, even the excellent style of this monograph is not sufficient to attract the attention of the physics community to this type of problems. This book is the first serious attempt to change the existing status quo. In it we demonstrate that, in fact, all branches of theoretical physics can be rewritten in the language of contact geometry and topology: from mechanics, thermodynamics and electrodynamics to optics, gauge fields and gravity; from physics of liquid crystals to quantum mechanics and quantum computers, etc. The book is written in the style of famous Landau-Lifshitz (L-L) multivolume course in theoretical physics. This means that its readers are expected to have solid background in theoretical physics (at least at the level of the L-L course). No prior knowledge of specialized mathematics is required. All needed new mathematics is given in the context of discussed physical problems. As in the L-L course some problems/exercises are formulated along the way and, again as in the L-L course, these are always supplemented by either solutions or by hints (with exact references). Unlike the L-L course, though, some definitions, theorems, and remarks are also presented. This is done with the purpose of stimulating the interest of our readers in deeper study of subject matters discussed in the text.
Plane Geometry, with Problems and Application
Author: Herbert Ellsworth Slaught
Publisher: Wentworth Press
ISBN:
Category : Mathematics
Languages : en
Pages : 344
Book Description
This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Publisher: Wentworth Press
ISBN:
Category : Mathematics
Languages : en
Pages : 344
Book Description
This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Combinatorial Geometry and Its Algorithmic Applications
Author: János Pach
Publisher: American Mathematical Soc.
ISBN: 0821846914
Category : Mathematics
Languages : en
Pages : 251
Book Description
"Based on a lecture series given by the authors at a satellite meeting of the 2006 International Congress of Mathematicians and on many articles written by them and their collaborators, this volume provides a comprehensive up-to-date survey of several core areas of combinatorial geometry. It describes the beginnings of the subject, going back to the nineteenth century (if not to Euclid), and explains why counting incidences and estimating the combinatorial complexity of various arrangements of geometric objects became the theoretical backbone of computational geometry in the 1980s and 1990s. The combinatorial techniques outlined in this book have found applications in many areas of computer science from graph drawing through hidden surface removal and motion planning to frequency allocation in cellular networks. "Combinatorial Geometry and Its Algorithmic Applications" is intended as a source book for professional mathematicians and computer scientists as well as for graduate students interested in combinatorics and geometry. Most chapters start with an attractive, simply formulated, but often difficult and only partially answered mathematical question, and describes the most efficient techniques developed for its solution. The text includes many challenging open problems, figures, and an extensive bibliography."--BOOK JACKET.
Publisher: American Mathematical Soc.
ISBN: 0821846914
Category : Mathematics
Languages : en
Pages : 251
Book Description
"Based on a lecture series given by the authors at a satellite meeting of the 2006 International Congress of Mathematicians and on many articles written by them and their collaborators, this volume provides a comprehensive up-to-date survey of several core areas of combinatorial geometry. It describes the beginnings of the subject, going back to the nineteenth century (if not to Euclid), and explains why counting incidences and estimating the combinatorial complexity of various arrangements of geometric objects became the theoretical backbone of computational geometry in the 1980s and 1990s. The combinatorial techniques outlined in this book have found applications in many areas of computer science from graph drawing through hidden surface removal and motion planning to frequency allocation in cellular networks. "Combinatorial Geometry and Its Algorithmic Applications" is intended as a source book for professional mathematicians and computer scientists as well as for graduate students interested in combinatorics and geometry. Most chapters start with an attractive, simply formulated, but often difficult and only partially answered mathematical question, and describes the most efficient techniques developed for its solution. The text includes many challenging open problems, figures, and an extensive bibliography."--BOOK JACKET.
Computational Geometry - Methods, Algorithms and Applications
Author: Hanspeter Bieri
Publisher: Springer Science & Business Media
ISBN: 9783540548911
Category : Computers
Languages : en
Pages : 340
Book Description
Radiocarbon After Four Decades: An Interdisciplinary Perspective commemorates the 40th anniversary of radiocarbon dating. The volume presents discussions of every aspect of this dating technique, as well as chronicles of its development and views of future advancements and applications. All of the 64 authors played major roles in establishment, development or application of this revolutionary scientific tool. The 35 chapters provide a solid foundation in the essential topics of radiocarbon dating: Historical Perspectives; The Natural Carbon Cycle; Instrumentation and Sample Preparation; Hydrology; Old World Archaeology; New World Archaeology; Earth Sciences; and Biomedical Applications.
Publisher: Springer Science & Business Media
ISBN: 9783540548911
Category : Computers
Languages : en
Pages : 340
Book Description
Radiocarbon After Four Decades: An Interdisciplinary Perspective commemorates the 40th anniversary of radiocarbon dating. The volume presents discussions of every aspect of this dating technique, as well as chronicles of its development and views of future advancements and applications. All of the 64 authors played major roles in establishment, development or application of this revolutionary scientific tool. The 35 chapters provide a solid foundation in the essential topics of radiocarbon dating: Historical Perspectives; The Natural Carbon Cycle; Instrumentation and Sample Preparation; Hydrology; Old World Archaeology; New World Archaeology; Earth Sciences; and Biomedical Applications.