Author: Edwin E. Moise
Publisher: Addison Wesley
ISBN:
Category : Business & Economics
Languages : en
Pages : 520
Book Description
Students can rely on Moise's clear and thorough presentation of basic geometry theorems. The author assumes that students have no previous knowledge of the subject and presents the basics of geometry from the ground up. This comprehensive approach gives instructors flexibility in teaching. For example, an advanced class may progress rapidly through Chapters 1-7 and devote most of its time to the material presented in Chapters 8, 10, 14, 19, and 20. Similarly, a less advanced class may go carefully through Chapters 1-7, and omit some of the more difficult chapters, such as 20 and 24.
Elementary Geometry from an Advanced Standpoint
Author: Edwin E. Moise
Publisher: Addison Wesley
ISBN:
Category : Business & Economics
Languages : en
Pages : 520
Book Description
Students can rely on Moise's clear and thorough presentation of basic geometry theorems. The author assumes that students have no previous knowledge of the subject and presents the basics of geometry from the ground up. This comprehensive approach gives instructors flexibility in teaching. For example, an advanced class may progress rapidly through Chapters 1-7 and devote most of its time to the material presented in Chapters 8, 10, 14, 19, and 20. Similarly, a less advanced class may go carefully through Chapters 1-7, and omit some of the more difficult chapters, such as 20 and 24.
Publisher: Addison Wesley
ISBN:
Category : Business & Economics
Languages : en
Pages : 520
Book Description
Students can rely on Moise's clear and thorough presentation of basic geometry theorems. The author assumes that students have no previous knowledge of the subject and presents the basics of geometry from the ground up. This comprehensive approach gives instructors flexibility in teaching. For example, an advanced class may progress rapidly through Chapters 1-7 and devote most of its time to the material presented in Chapters 8, 10, 14, 19, and 20. Similarly, a less advanced class may go carefully through Chapters 1-7, and omit some of the more difficult chapters, such as 20 and 24.
Advanced Euclidean Geometry
Author: Roger A. Johnson
Publisher: Courier Corporation
ISBN: 048615498X
Category : Mathematics
Languages : en
Pages : 338
Book Description
This classic text explores the geometry of the triangle and the circle, concentrating on extensions of Euclidean theory, and examining in detail many relatively recent theorems. 1929 edition.
Publisher: Courier Corporation
ISBN: 048615498X
Category : Mathematics
Languages : en
Pages : 338
Book Description
This classic text explores the geometry of the triangle and the circle, concentrating on extensions of Euclidean theory, and examining in detail many relatively recent theorems. 1929 edition.
Elementary Geometry
Author: Ilka Agricola
Publisher: American Mathematical Soc.
ISBN: 0821843478
Category : Mathematics
Languages : en
Pages : 257
Book Description
Plane geometry is developed from its basic objects and their properties and then moves to conics and basic solids, including the Platonic solids and a proof of Euler's polytope formula. Particular care is taken to explain symmetry groups, including the description of ornaments and the classification of isometries.
Publisher: American Mathematical Soc.
ISBN: 0821843478
Category : Mathematics
Languages : en
Pages : 257
Book Description
Plane geometry is developed from its basic objects and their properties and then moves to conics and basic solids, including the Platonic solids and a proof of Euler's polytope formula. Particular care is taken to explain symmetry groups, including the description of ornaments and the classification of isometries.
Elementary College Geometry
Author: Henry Africk
Publisher:
ISBN: 9780759341906
Category : Geometry
Languages : en
Pages : 369
Book Description
Publisher:
ISBN: 9780759341906
Category : Geometry
Languages : en
Pages : 369
Book Description
Elementary Geometry
Author: John Roe
Publisher: Clarendon Press
ISBN: 9780198534563
Category : Language Arts & Disciplines
Languages : en
Pages : 324
Book Description
This textbook provides an introduction to Euclidean geometry. While developing geometry for its own sake, the book also emphasizes the links between geometry and other branches of pure and applied mathematics.
Publisher: Clarendon Press
ISBN: 9780198534563
Category : Language Arts & Disciplines
Languages : en
Pages : 324
Book Description
This textbook provides an introduction to Euclidean geometry. While developing geometry for its own sake, the book also emphasizes the links between geometry and other branches of pure and applied mathematics.
Advanced Topics in Elementary Geometry
Author: Roger McClintock
Publisher:
ISBN:
Category : Geometry
Languages : en
Pages : 128
Book Description
Publisher:
ISBN:
Category : Geometry
Languages : en
Pages : 128
Book Description
Topics in Geometry
Author: Robert Bix
Publisher: Elsevier
ISBN: 1483296466
Category : Mathematics
Languages : en
Pages : 549
Book Description
This volume presents an accessible, self-contained survey of topics in Euclidean and non-Euclidean geometry. It includes plentiful illustrations and exercises in support of the thoroughly worked-out proofs. The author's emphasis on the connections between Euclidean and non-Euclidean geometry unifies the range of topics covered.The text opens with a brief review of elementary geometry before proceeding to advanced material. Topics covered include advanced Euclidean and non-Euclidean geometry, division ratios and triangles, transformation geometry, projective geometry, conic sections, and hyperbolic and absolute geometry. Topics in Geometry includes over 800 illustrations and extensive exercises of varying difficulty.
Publisher: Elsevier
ISBN: 1483296466
Category : Mathematics
Languages : en
Pages : 549
Book Description
This volume presents an accessible, self-contained survey of topics in Euclidean and non-Euclidean geometry. It includes plentiful illustrations and exercises in support of the thoroughly worked-out proofs. The author's emphasis on the connections between Euclidean and non-Euclidean geometry unifies the range of topics covered.The text opens with a brief review of elementary geometry before proceeding to advanced material. Topics covered include advanced Euclidean and non-Euclidean geometry, division ratios and triangles, transformation geometry, projective geometry, conic sections, and hyperbolic and absolute geometry. Topics in Geometry includes over 800 illustrations and extensive exercises of varying difficulty.
Modern Geometry
Author: Roger Arthur Johnson
Publisher:
ISBN:
Category : Circle
Languages : en
Pages : 344
Book Description
Publisher:
ISBN:
Category : Circle
Languages : en
Pages : 344
Book Description
Elementary Topics in Differential Geometry
Author: J. A. Thorpe
Publisher: Springer Science & Business Media
ISBN: 1461261538
Category : Mathematics
Languages : en
Pages : 263
Book Description
In the past decade there has been a significant change in the freshman/ sophomore mathematics curriculum as taught at many, if not most, of our colleges. This has been brought about by the introduction of linear algebra into the curriculum at the sophomore level. The advantages of using linear algebra both in the teaching of differential equations and in the teaching of multivariate calculus are by now widely recognized. Several textbooks adopting this point of view are now available and have been widely adopted. Students completing the sophomore year now have a fair preliminary under standing of spaces of many dimensions. It should be apparent that courses on the junior level should draw upon and reinforce the concepts and skills learned during the previous year. Unfortunately, in differential geometry at least, this is usually not the case. Textbooks directed to students at this level generally restrict attention to 2-dimensional surfaces in 3-space rather than to surfaces of arbitrary dimension. Although most of the recent books do use linear algebra, it is only the algebra of ~3. The student's preliminary understanding of higher dimensions is not cultivated.
Publisher: Springer Science & Business Media
ISBN: 1461261538
Category : Mathematics
Languages : en
Pages : 263
Book Description
In the past decade there has been a significant change in the freshman/ sophomore mathematics curriculum as taught at many, if not most, of our colleges. This has been brought about by the introduction of linear algebra into the curriculum at the sophomore level. The advantages of using linear algebra both in the teaching of differential equations and in the teaching of multivariate calculus are by now widely recognized. Several textbooks adopting this point of view are now available and have been widely adopted. Students completing the sophomore year now have a fair preliminary under standing of spaces of many dimensions. It should be apparent that courses on the junior level should draw upon and reinforce the concepts and skills learned during the previous year. Unfortunately, in differential geometry at least, this is usually not the case. Textbooks directed to students at this level generally restrict attention to 2-dimensional surfaces in 3-space rather than to surfaces of arbitrary dimension. Although most of the recent books do use linear algebra, it is only the algebra of ~3. The student's preliminary understanding of higher dimensions is not cultivated.
Exploring Advanced Euclidean Geometry with GeoGebra
Author: Gerard A. Venema
Publisher: American Mathematical Soc.
ISBN: 0883857847
Category : Mathematics
Languages : en
Pages : 147
Book Description
This book provides an inquiry-based introduction to advanced Euclidean geometry. It utilizes dynamic geometry software, specifically GeoGebra, to explore the statements and proofs of many of the most interesting theorems in the subject. Topics covered include triangle centers, inscribed, circumscribed, and escribed circles, medial and orthic triangles, the nine-point circle, duality, and the theorems of Ceva and Menelaus, as well as numerous applications of those theorems. The final chapter explores constructions in the Poincare disk model for hyperbolic geometry. The book can be used either as a computer laboratory manual to supplement an undergraduate course in geometry or as a stand-alone introduction to advanced topics in Euclidean geometry. The text consists almost entirely of exercises (with hints) that guide students as they discover the geometric relationships for themselves. First the ideas are explored at the computer and then those ideas are assembled into a proof of the result under investigation. The goals are for the reader to experience the joy of discovering geometric relationships, to develop a deeper understanding of geometry, and to encourage an appreciation for the beauty of Euclidean geometry.
Publisher: American Mathematical Soc.
ISBN: 0883857847
Category : Mathematics
Languages : en
Pages : 147
Book Description
This book provides an inquiry-based introduction to advanced Euclidean geometry. It utilizes dynamic geometry software, specifically GeoGebra, to explore the statements and proofs of many of the most interesting theorems in the subject. Topics covered include triangle centers, inscribed, circumscribed, and escribed circles, medial and orthic triangles, the nine-point circle, duality, and the theorems of Ceva and Menelaus, as well as numerous applications of those theorems. The final chapter explores constructions in the Poincare disk model for hyperbolic geometry. The book can be used either as a computer laboratory manual to supplement an undergraduate course in geometry or as a stand-alone introduction to advanced topics in Euclidean geometry. The text consists almost entirely of exercises (with hints) that guide students as they discover the geometric relationships for themselves. First the ideas are explored at the computer and then those ideas are assembled into a proof of the result under investigation. The goals are for the reader to experience the joy of discovering geometric relationships, to develop a deeper understanding of geometry, and to encourage an appreciation for the beauty of Euclidean geometry.