Anisotropic hp-Mesh Adaptation Methods

Anisotropic hp-Mesh Adaptation Methods PDF Author: Vít Dolejší
Publisher: Springer Nature
ISBN: 3031042794
Category : Mathematics
Languages : en
Pages : 258

Get Book Here

Book Description
Mesh adaptation methods can have a profound impact on the numerical solution of partial differential equations. If devised and implemented properly, adaptation significantly reduces the size of the algebraic systems resulting from the discretization, while ensuring that applicable error tolerances are met. In this monograph, drawing from many years of experience, the authors give a comprehensive presentation of metric-based anisotropic hp-mesh adaptation methods. A large part of this monograph is devoted to the derivation of computable interpolation error estimates on simplicial meshes, which take into account the geometry of mesh elements as well as the anisotropic features of the interpolated function. These estimates are then used for the optimization of corresponding finite element spaces in a variety of settings. Both steady and time dependent problems are treated, as well as goal-oriented adaptation. Practical aspects of implementation are also explored, including several algorithms. Many numerical experiments using the discontinuous Galerkin method are presented to illustrate the performance of the adaptive techniques. This monograph is intended for scientists and researchers, including doctoral and master-level students. Portions of the text can also be used as study material for advanced university lectures concerning a posteriori error analysis and mesh adaptation.

Anisotropic hp-Mesh Adaptation Methods

Anisotropic hp-Mesh Adaptation Methods PDF Author: Vít Dolejší
Publisher: Springer Nature
ISBN: 3031042794
Category : Mathematics
Languages : en
Pages : 258

Get Book Here

Book Description
Mesh adaptation methods can have a profound impact on the numerical solution of partial differential equations. If devised and implemented properly, adaptation significantly reduces the size of the algebraic systems resulting from the discretization, while ensuring that applicable error tolerances are met. In this monograph, drawing from many years of experience, the authors give a comprehensive presentation of metric-based anisotropic hp-mesh adaptation methods. A large part of this monograph is devoted to the derivation of computable interpolation error estimates on simplicial meshes, which take into account the geometry of mesh elements as well as the anisotropic features of the interpolated function. These estimates are then used for the optimization of corresponding finite element spaces in a variety of settings. Both steady and time dependent problems are treated, as well as goal-oriented adaptation. Practical aspects of implementation are also explored, including several algorithms. Many numerical experiments using the discontinuous Galerkin method are presented to illustrate the performance of the adaptive techniques. This monograph is intended for scientists and researchers, including doctoral and master-level students. Portions of the text can also be used as study material for advanced university lectures concerning a posteriori error analysis and mesh adaptation.

Mesh Adaptation for Computational Fluid Dynamics, Volume 2

Mesh Adaptation for Computational Fluid Dynamics, Volume 2 PDF Author: Alain Dervieux
Publisher: John Wiley & Sons
ISBN: 1786308320
Category : Science
Languages : en
Pages : 244

Get Book Here

Book Description
Simulation technology, and computational fluid dynamics (CFD) in particular, is essential in the search for solutions to the modern challenges faced by humanity. Revolutions in CFD over the last decade include the use of unstructured meshes, permitting the modeling of any 3D geometry. New frontiers point to mesh adaptation, allowing not only seamless meshing (for the engineer) but also simulation certification for safer products and risk prediction. Mesh Adaptation for Computational Dynamics 2 is the second of two volumes and introduces topics including optimal control formulation, minimizing a goal function, and extending the steady algorithm to unsteady physics. Also covered are multi-rate strategies, steady inviscid flows in aeronautics and an extension to viscous flows. This book will be useful to anybody interested in mesh adaptation pertaining to CFD, especially researchers, teachers and students.

Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2020+1

Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2020+1 PDF Author: Jens M. Melenk
Publisher: Springer Nature
ISBN: 3031204328
Category : Mathematics
Languages : en
Pages : 571

Get Book Here

Book Description
The volume features high-quality papers based on the presentations at the ICOSAHOM 2020+1 on spectral and high order methods. The carefully reviewed articles cover state of the art topics in high order discretizations of partial differential equations. The volume presents a wide range of topics including the design and analysis of high order methods, the development of fast solvers on modern computer architecture, and the application of these methods in fluid and structural mechanics computations.

Fast Solvers for Mesh-Based Computations

Fast Solvers for Mesh-Based Computations PDF Author: Maciej Paszynski
Publisher: CRC Press
ISBN: 1498754201
Category : Mathematics
Languages : en
Pages : 350

Get Book Here

Book Description
Fast Solvers for Mesh-Based Computations presents an alternative way of constructing multi-frontal direct solver algorithms for mesh-based computations. It also describes how to design and implement those algorithms.The book's structure follows those of the matrices, starting from tri-diagonal matrices resulting from one-dimensional mesh-based meth

Error Control, Adaptive Discretizations, and Applications, Part 1

Error Control, Adaptive Discretizations, and Applications, Part 1 PDF Author:
Publisher: Elsevier
ISBN: 0443294496
Category : Science
Languages : en
Pages : 446

Get Book Here

Book Description
Error Control, Adaptive Discretizations, and Applications, Volume 58, Part One highlights new advances in the field, with this new volume presenting interesting chapters written by an international board of authors. Chapters in this release cover hp adaptive Discontinuous Galerkin strategies driven by a posteriori error estimation with application to aeronautical flow problems, An anisotropic mesh adaptation method based on gradient recovery and optimal shape elements, and Model reduction techniques for parametrized nonlinear partial differential equations. - Covers multi-scale modeling - Includes updates on data-driven modeling - Presents the latest information on large deformations of multi-scale materials

Proceedings of the 19th International Meshing Roundtable

Proceedings of the 19th International Meshing Roundtable PDF Author: Suzanne Shontz
Publisher: Springer Science & Business Media
ISBN: 364215414X
Category : Technology & Engineering
Languages : en
Pages : 426

Get Book Here

Book Description
The papers in this volume were selected for presentation at the 19th International Meshing Roundtable (IMR), held October 3–6, 2010 in Chattanooga, Tennessee, USA. The conference was started by Sandia National Laboratories in 1992 as a small meeting of organizations striving to establish a common focus for research and development in the field of mesh generation. Now after 19 consecutive years, the International Meshing Roundtable has become recognized as an international focal point annually attended by researchers and developers from dozens of co- tries around the world. The 19th International Meshing Roundtable consists of technical presentations from contributed papers, research notes, keynote and invited talks, short course presentations, and a poster session and competition. The Program Committee would like to express its appreciation to all who participate to make the IMR a successful and enriching experience. The papers in these proceedings were selected by the Program Committee from among numerous submissions. Based on input from peer reviews, the committee selected these papers for their perceived quality, originality, and appropriateness to the theme of the International Meshing Roundtable. We would like to thank all who submitted papers. We would also like to thank the colleagues who provided reviews of the submitted papers. The names of the reviewers are acknowledged in the following pages. We extend special thanks to Jacqueline Hunter for her time and effort to make the 19th IMR another outstanding conference.

Finite Element Mesh Generation

Finite Element Mesh Generation PDF Author: Daniel S.H. Lo
Publisher: CRC Press
ISBN: 041569048X
Category : Technology & Engineering
Languages : en
Pages : 676

Get Book Here

Book Description
Highlights the Progression of Meshing Technologies and Their Applications Finite Element Mesh Generation provides a concise and comprehensive guide to the application of finite element mesh generation over 2D domains, curved surfaces, and 3D space. Organised according to the geometry and dimension of the problem domains, it develops from the basic meshing algorithms to the most advanced schemes to deal with problems with specific requirements such as boundary conformity, adaptive and anisotropic elements, shape qualities, and mesh optimization. It sets out the fundamentals of popular techniques, including: Delaunay triangulation Advancing-front (ADF) approach Quadtree/Octree techniques Refinement and optimization-based strategies From the geometrical and the topological aspects and their associated operations and inter-relationships, each approach is vividly described and illustrated with examples. Beyond the algorithms, the book also explores the practice of using metric tensor and surface curvatures for generating anisotropic meshes on parametric space. It presents results from research including 3D anisotropic meshing, mesh generation over unbounded domains, meshing by means of intersection, re-meshing by Delaunay-ADF approach, mesh refinement and optimization, generation of hexahedral meshes, and large scale and parallel meshing, along with innovative unpublished meshing methods. The author provides illustrations of major meshing algorithms, pseudo codes, and programming codes in C++ or FORTRAN. Geared toward research centers, universities, and engineering companies, Finite Element Mesh Generation describes mesh generation methods and fundamental techniques, and also serves as a valuable reference for laymen and experts alike.

IDIHOM: Industrialization of High-Order Methods - A Top-Down Approach

IDIHOM: Industrialization of High-Order Methods - A Top-Down Approach PDF Author: Norbert Kroll
Publisher: Springer
ISBN: 3319128868
Category : Technology & Engineering
Languages : en
Pages : 683

Get Book Here

Book Description
The book describes the main findings of the EU-funded project IDIHOM (Industrialization of High-Order Methods – A Top-Down Approach). The goal of this project was the improvement, utilization and demonstration of innovative higher-order simulation capabilities for large-scale aerodynamic application challenges in the aircraft industry. The IDIHOM consortium consisted of 21 organizations, including aircraft manufacturers, software vendors, as well as the major European research establishments and several universities, all of them with proven expertise in the field of computational fluid dynamics. After a general introduction to the project, the book reports on new approaches for curved boundary-grid generation, high-order solution methods and visualization techniques. It summarizes the achievements, weaknesses and perspectives of the new simulation capabilities developed by the project partners for various industrial applications, and includes internal- and external-aerodynamic as well as multidisciplinary test cases.

Handbook of Numerical Methods for Hyperbolic Problems

Handbook of Numerical Methods for Hyperbolic Problems PDF Author: Remi Abgrall
Publisher: Elsevier
ISBN: 044463911X
Category : Mathematics
Languages : en
Pages : 612

Get Book Here

Book Description
Handbook on Numerical Methods for Hyperbolic Problems: Applied and Modern Issues details the large amount of literature in the design, analysis, and application of various numerical algorithms for solving hyperbolic equations that has been produced in the last several decades. This volume provides concise summaries from experts in different types of algorithms, so that readers can find a variety of algorithms under different situations and become familiar with their relative advantages and limitations. - Provides detailed, cutting-edge background explanations of existing algorithms and their analysis - Presents a method of different algorithms for specific applications and the relative advantages and limitations of different algorithms for engineers or those involved in applications - Written by leading subject experts in each field, the volumes provide breadth and depth of content coverage

ADIGMA – A European Initiative on the Development of Adaptive Higher-Order Variational Methods for Aerospace Applications

ADIGMA – A European Initiative on the Development of Adaptive Higher-Order Variational Methods for Aerospace Applications PDF Author: Norbert Kroll
Publisher: Springer Science & Business Media
ISBN: 3642037070
Category : Technology & Engineering
Languages : en
Pages : 498

Get Book Here

Book Description
This volume contains results gained from the EU-funded 6th Framework project ADIGMA (Adaptive Higher-order Variational Methods for Aerodynamic Applications in Industry). The goal of ADIGMA was the development and utilization of innovative adaptive higher-order methods for the compressible flow equations enabling reliable, mesh independent numerical solutions for large-scale aerodynamic applications in aircraft industry. The ADIGMA consortium was comprised of 22 organizations which included the main European aircraft manufacturers, the major European research establishments and several universities, all with well proven expertise in Computational Fluid Dynamics (CFD). The book presents an introduction to the project, exhibits partners’ methods and approaches and provides a critical assessment of the newly developed methods for industrial aerodynamic applications. The best numerical strategies for integration as major building blocks for the next generation of industrial flow solvers are identified.