Anisotropic Ductile Fracture of Metal Sheets

Anisotropic Ductile Fracture of Metal Sheets PDF Author: Meng Luo (Ph. D.)
Publisher:
ISBN:
Category :
Languages : en
Pages : 311

Get Book Here

Book Description
Anisotropic mechanical properties are common in plastically deformed or thermomechanically processed metallic materials, e.g. in rolled or extruded sheet. Among them, the anisotropy of large strain plastic deformation and ductile fracture under multi-axial loading is highly relevant to various industrial applications such as metal forming, impact failure of structures, etc. In this thesis, a comprehensive study of the plasticity and ductile fracture of anisotropic metal sheets is presented, covering experimental characterization, constitutive modeling and numerical implementation. On the basis of an extensive multiaxial experimental program, the anisotropic plasticity of the present aluminum alloy is modeled using a macroscopic phenomenological model and a polycrystalline plasticity model, respectively. The proposed phenomenological modeling makes use of a linear-transformation- based orthotropic yield function with pressure dependence, as well as a combined isotropic/kinematic hardening law, and is able to capture most features of the anisotropic plastic behavior under various multi-axial stress states with good accuracy and computational efficiency. At the same time, a physically-motivated self-consistent polycrystalline plasticity model is utilized to describe the texture-induced anisotropy and through-thickness heterogeneity of the present sheet material. A Reduced Texture Methodology (RTM) is developed to provide the computational efficiency needed for industrial applications. In additional to an accurate prediction of all macroscopic material behaviors, the polycrystalline model reveals that the development of the crystallographic texture is the underlying mechanism of plastic anisotropy and heterogeneity. The anisotropic ductile fracture of the present aluminum alloy extrusion is investigated using a hybrid experimental-numerical approach. The experimental results show a strong dependency of the strain to fracture on the material orientation with respect to the loading direction. A new non-associated anisotropic fracture model is proposed which makes use of a stress state dependent fracture locus and an anisotropic plastic strain measure obtained through the linear transformation of the plastic strain tensor. It is shown that the use of the Modified Mohr-Coulomb (MMC) stress state weighting function in this anisotropic fracture modeling framework provides accurate predictions of the onset of fracture for all fourteen distinct fracture experiments. The proposed plasticity and fracture modeling framework is successfully validated on a industrial stretch-bending operation.

Anisotropic Ductile Fracture of Metal Sheets

Anisotropic Ductile Fracture of Metal Sheets PDF Author: Meng Luo (Ph. D.)
Publisher:
ISBN:
Category :
Languages : en
Pages : 311

Get Book Here

Book Description
Anisotropic mechanical properties are common in plastically deformed or thermomechanically processed metallic materials, e.g. in rolled or extruded sheet. Among them, the anisotropy of large strain plastic deformation and ductile fracture under multi-axial loading is highly relevant to various industrial applications such as metal forming, impact failure of structures, etc. In this thesis, a comprehensive study of the plasticity and ductile fracture of anisotropic metal sheets is presented, covering experimental characterization, constitutive modeling and numerical implementation. On the basis of an extensive multiaxial experimental program, the anisotropic plasticity of the present aluminum alloy is modeled using a macroscopic phenomenological model and a polycrystalline plasticity model, respectively. The proposed phenomenological modeling makes use of a linear-transformation- based orthotropic yield function with pressure dependence, as well as a combined isotropic/kinematic hardening law, and is able to capture most features of the anisotropic plastic behavior under various multi-axial stress states with good accuracy and computational efficiency. At the same time, a physically-motivated self-consistent polycrystalline plasticity model is utilized to describe the texture-induced anisotropy and through-thickness heterogeneity of the present sheet material. A Reduced Texture Methodology (RTM) is developed to provide the computational efficiency needed for industrial applications. In additional to an accurate prediction of all macroscopic material behaviors, the polycrystalline model reveals that the development of the crystallographic texture is the underlying mechanism of plastic anisotropy and heterogeneity. The anisotropic ductile fracture of the present aluminum alloy extrusion is investigated using a hybrid experimental-numerical approach. The experimental results show a strong dependency of the strain to fracture on the material orientation with respect to the loading direction. A new non-associated anisotropic fracture model is proposed which makes use of a stress state dependent fracture locus and an anisotropic plastic strain measure obtained through the linear transformation of the plastic strain tensor. It is shown that the use of the Modified Mohr-Coulomb (MMC) stress state weighting function in this anisotropic fracture modeling framework provides accurate predictions of the onset of fracture for all fourteen distinct fracture experiments. The proposed plasticity and fracture modeling framework is successfully validated on a industrial stretch-bending operation.

Mechanics of Sheet Metal Forming

Mechanics of Sheet Metal Forming PDF Author: Z. Marciniak
Publisher: Butterworth-Heinemann
ISBN: 9780750653008
Category : Business & Economics
Languages : en
Pages : 236

Get Book Here

Book Description
Material properties -- Sheet deformation processes -- Deformation of sheet in plane stress -- Simplified stamping analysis -- Load instability and tearing -- Bending of sheet -- Simplified analysis of circular shells -- Cylindrical deep drawing -- Stretching circular shells -- Combined bending and tension of sheet -- Hydroforming.

Sheet Metal Forming Processes

Sheet Metal Forming Processes PDF Author: Dorel Banabic
Publisher: Springer Science & Business Media
ISBN: 3540881131
Category : Technology & Engineering
Languages : en
Pages : 312

Get Book Here

Book Description
The concept of virtual manufacturing has been developed in order to increase the industrial performances, being one of the most ef cient ways of reducing the m- ufacturing times and improving the quality of the products. Numerical simulation of metal forming processes, as a component of the virtual manufacturing process, has a very important contribution to the reduction of the lead time. The nite element method is currently the most widely used numerical procedure for s- ulating sheet metal forming processes. The accuracy of the simulation programs used in industry is in uenced by the constitutive models and the forming limit curves models incorporated in their structure. From the above discussion, we can distinguish a very strong connection between virtual manufacturing as a general concept, ?nite element method as a numerical analysis instrument and constitutive laws,aswellas forming limit curves as a speci city of the sheet metal forming processes. Consequently, the material modeling is strategic when models of reality have to be built. The book gives a synthetic presentation of the research performed in the eld of sheet metal forming simulation during more than 20 years by the members of three international teams: the Research Centre on Sheet Metal Forming—CERTETA (Technical University of Cluj-Napoca, Romania); AutoForm Company from Zürich, Switzerland and VOLVO automotive company from Sweden. The rst chapter presents an overview of different Finite Element (FE) formu- tions used for sheet metal forming simulation, now and in the past.

Ductile Fracture at Intermediate Stress Triaxialities

Ductile Fracture at Intermediate Stress Triaxialities PDF Author: Matthieu Dunand
Publisher:
ISBN:
Category :
Languages : en
Pages : 256

Get Book Here

Book Description
Accurate predictions of the onset of ductile fracture play an increasingly important role in the design of lightweight sheet metal structures. With the development of virtual prototyping practices, most transportation vehicles are now computer-engineered in great detail before launching their mass production, thereby requiring reliable models for plasticity and fracture. This thesis reports on a comprehensive investigation into the effect of stress state on the onset of ductile fracture of an Advanced High Strength Steel (AHSS), covering development of new experimental procedures, material characterization and phenomenological as well as micro-mechanical modeling of the onset of fracture. Based on an extensive multi-axial experimental program, the anisotropic plasticity of the present material is described by a non-associated quadratic anisotropic model. Comparison of model predictions to experimental results reveals that the proposed model provides better predictions than associated isotropic or anisotropic quadratic models. Moreover, a structural validation is presented that demonstrates the higher prediction accuracy of the non-associated plasticity model. A hybrid experimental-numerical approach is proposed to investigate the dependence of the onset of fracture to stress state. The experimental program covers the complete range of positive stress triaxialities, from pure shear to equibiaxial tension. It includes different full thickness specimens as well as multi-axial fracture experiments where combinations of tension and shear loadings are applied to a newly developed butterfly-shaped specimen. Loading paths to fracture are determined for each experiment in terms of stress triaxiality, Lode angle parameter and equivalent plastic strain and show a non-monotonic and strong dependence of ductility to stress state. The extensive fracture characterization is used to evaluate the predictive capabilities of two phenomenological and physics-inspired fracture models (the Modified Mohr-Coulomb and a shear-modified Gurson model) that take the effect of the first and third stress tensor invariants into account in predicting the onset of fracture. Finally, a micro-mechanical model relating the onset of fracture to plastic localization into a narrow band at the micro-scale is developed. The effect of stress state on localization is investigated numerically by means of a 3D void-containing unit cell submitted to well-controlled and proportional loadings in the macroscopic stress state. Based on simulation results, an analytical localization criterion is proposed which defines an open convex envelope in terms of the shear and normal stresses acting on the plane of localization and correlates well with experimental results.

TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings

TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings PDF Author: The Minerals, Metals & Materials Society
Publisher: Springer Nature
ISBN: 3030362965
Category : Technology & Engineering
Languages : en
Pages : 2046

Get Book Here

Book Description
This collection presents papers from the 149th Annual Meeting & Exhibition of The Minerals, Metals & Materials Society.

Titanium Alloys

Titanium Alloys PDF Author: Valentin N. Moiseyev
Publisher: CRC Press
ISBN: 1420037676
Category : Technology & Engineering
Languages : en
Pages : 214

Get Book Here

Book Description
This text offers previously elusive information on state-of-the-art Russian metallurgic technology of titanium alloys. It details their physical, mechanical, and technological properties, as well as treatments and applications in various branches of modern industry, particularly aircraft and aerospace construction. Titanium Alloys: Russian Aircraft and Aerospace Applications addresses all facets of titanium alloys in aerospace and aviation technology, including specific applications, fundamentals, composition, and properties of commercial alloys. It is useful for all students and researchers interested in the investigation and applications of titanium.

State of the Art and Future Trends in Material Modeling

State of the Art and Future Trends in Material Modeling PDF Author: Holm Altenbach
Publisher: Springer Nature
ISBN: 3030303551
Category : Technology & Engineering
Languages : en
Pages : 505

Get Book Here

Book Description
This special anniversary book celebrates the success of this Springer book series highlighting materials modeling as the key to developing new engineering products and applications. In this 100th volume of “Advanced Structured Materials”, international experts showcase the current state of the art and future trends in materials modeling, which is essential in order to fulfill the demanding requirements of next-generation engineering tasks.

A Summary of the Theory of Fracture in Metals

A Summary of the Theory of Fracture in Metals PDF Author: J. W. Spretnak
Publisher:
ISBN:
Category : Metals
Languages : en
Pages : 70

Get Book Here

Book Description


Micromechanics Modelling of Ductile Fracture

Micromechanics Modelling of Ductile Fracture PDF Author: Zengtao Chen
Publisher: Springer Science & Business Media
ISBN: 9400760981
Category : Science
Languages : en
Pages : 335

Get Book Here

Book Description
This book summarizes research advances in micromechanics modeling of ductile fractures made in the past two decades. The ultimate goal of this book is to reach manufacturing frontline designers and materials engineers by providing a user-oriented, theoretical background of micromechanics modeling. Accordingly, the book is organized in a unique way, first presenting a vigorous damage percolation model developed by the authors over the last ten years. This model overcomes almost all difficulties of the existing models and can be used to completely accommodate ductile damage developments within a single-measure microstructure frame. Related void damage criteria including nucleation, growth and coalescence are then discussed in detail: how they are improved, when and where they are used in the model, and how the model performs in comparison with the existing models. Sample forming simulations are provided to illustrate the model’s performance.

Ultra-low-Cycle Fatigue Failure of Metal Structures under Strong Earthquakes

Ultra-low-Cycle Fatigue Failure of Metal Structures under Strong Earthquakes PDF Author: Liang-Jiu Jia
Publisher: Springer
ISBN: 9811326614
Category : Science
Languages : en
Pages : 231

Get Book Here

Book Description
This book presents experimental results and theoretical advances in the field of ultra-low-cycle fatigue failure of metal structures under strong earthquakes, where the dominant failure mechanism is ductile fracture. Studies on ultra-low-cycle fatigue failure of metal materials and structures have caught the interest of engineers and researchers from various disciplines, such as material, civil and mechanical engineering. Pursuing a holistic approach, the book establishes a fundamental framework for this topic, while also highlighting the importance of theoretical analysis and experimental results in the fracture evaluation of metal structures under seismic loading. Accordingly, it offers a valuable resource for undergraduate and graduate students interested in ultra-low-cycle fatigue, researchers investigating steel and aluminum structures, and structural engineers working on applications related to cyclic large plastic loading conditions.