Analysis of Variance, Design, and Regression

Analysis of Variance, Design, and Regression PDF Author: Ronald Christensen
Publisher: CRC Press
ISBN: 1498730191
Category : Mathematics
Languages : en
Pages : 645

Get Book Here

Book Description
Analysis of Variance, Design, and Regression: Linear Modeling for Unbalanced Data, Second Edition presents linear structures for modeling data with an emphasis on how to incorporate specific ideas (hypotheses) about the structure of the data into a linear model for the data. The book carefully analyzes small data sets by using tools that are easily scaled to big data. The tools also apply to small relevant data sets that are extracted from big data. New to the Second Edition Reorganized to focus on unbalanced data Reworked balanced analyses using methods for unbalanced data Introductions to nonparametric and lasso regression Introductions to general additive and generalized additive models Examination of homologous factors Unbalanced split plot analyses Extensions to generalized linear models R, Minitab®, and SAS code on the author’s website The text can be used in a variety of courses, including a yearlong graduate course on regression and ANOVA or a data analysis course for upper-division statistics students and graduate students from other fields. It places a strong emphasis on interpreting the range of computer output encountered when dealing with unbalanced data.

Analysis of Variance, Design, and Regression

Analysis of Variance, Design, and Regression PDF Author: Ronald Christensen
Publisher: CRC Press
ISBN: 1498730191
Category : Mathematics
Languages : en
Pages : 645

Get Book Here

Book Description
Analysis of Variance, Design, and Regression: Linear Modeling for Unbalanced Data, Second Edition presents linear structures for modeling data with an emphasis on how to incorporate specific ideas (hypotheses) about the structure of the data into a linear model for the data. The book carefully analyzes small data sets by using tools that are easily scaled to big data. The tools also apply to small relevant data sets that are extracted from big data. New to the Second Edition Reorganized to focus on unbalanced data Reworked balanced analyses using methods for unbalanced data Introductions to nonparametric and lasso regression Introductions to general additive and generalized additive models Examination of homologous factors Unbalanced split plot analyses Extensions to generalized linear models R, Minitab®, and SAS code on the author’s website The text can be used in a variety of courses, including a yearlong graduate course on regression and ANOVA or a data analysis course for upper-division statistics students and graduate students from other fields. It places a strong emphasis on interpreting the range of computer output encountered when dealing with unbalanced data.

Analysis of Variance, Design, and Regression

Analysis of Variance, Design, and Regression PDF Author: Ronald Christensen
Publisher: CRC Press
ISBN: 9780412062919
Category : Mathematics
Languages : en
Pages : 608

Get Book Here

Book Description
This text presents a comprehensive treatment of basic statistical methods and their applications. It focuses on the analysis of variance and regression, but also addressing basic ideas in experimental design and count data. The book has four connecting themes: similarity of inferential procedures, balanced one-way analysis of variance, comparison of models, and checking assumptions. Most inferential procedures are based on identifying a scalar parameter of interest, estimating that parameter, obtaining the standard error of the estimate, and identifying the appropriate reference distribution. Given these items, the inferential procedures are identical for various parameters. Balanced one-way analysis of variance has a simple, intuitive interpretation in terms of comparing the sample variance of the group means with the mean of the sample variance for each group. All balanced analysis of variance problems are considered in terms of computing sample variances for various group means. Comparing different models provides a structure for examining both balanced and unbalanced analysis of variance problems and regression problems. Checking assumptions is presented as a crucial part of every statistical analysis. Examples using real data from a wide variety of fields are used to motivate theory. Christensen consistently examines residual plots and presents alternative analyses using different transformation and case deletions. Detailed examination of interactions, three factor analysis of variance, and a split-plot design with four factors are included. The numerous exercises emphasize analysis of real data. Senior undergraduate and graduate students in statistics and graduate students in other disciplines using analysis of variance, design of experiments, or regression analysis will find this book useful.

Analysis of Variance Designs

Analysis of Variance Designs PDF Author: Glenn Gamst
Publisher:
ISBN: 9780511429156
Category : Analysis of variance
Languages : en
Pages : 596

Get Book Here

Book Description
This textbook explains ANOVA designs for advanced undergraduates and graduate students in the behavioural sciences.

Data Analysis for Research Designs

Data Analysis for Research Designs PDF Author: Geoffrey Keppel
Publisher: Macmillan
ISBN: 9780716719915
Category : Mathematics
Languages : en
Pages : 628

Get Book Here

Book Description
Data Analysis for Research Designs covers the analytical techniques for the analysis of variance (ANOVA) and multiple regression/correlation (MRC), emphasizing single-degree-of-freedom comparisons so that students focus on clear research planning. This text is designed for advanced undergraduates and graduate students of the behavioral and social sciences who have an understanding of algebra and statistics.

Learning Statistics with R

Learning Statistics with R PDF Author: Daniel Navarro
Publisher: Lulu.com
ISBN: 1326189727
Category : Computers
Languages : en
Pages : 617

Get Book Here

Book Description
"Learning Statistics with R" covers the contents of an introductory statistics class, as typically taught to undergraduate psychology students, focusing on the use of the R statistical software and adopting a light, conversational style throughout. The book discusses how to get started in R, and gives an introduction to data manipulation and writing scripts. From a statistical perspective, the book discusses descriptive statistics and graphing first, followed by chapters on probability theory, sampling and estimation, and null hypothesis testing. After introducing the theory, the book covers the analysis of contingency tables, t-tests, ANOVAs and regression. Bayesian statistics are covered at the end of the book. For more information (and the opportunity to check the book out before you buy!) visit http://ua.edu.au/ccs/teaching/lsr or http://learningstatisticswithr.com

Experimental Design and the Analysis of Variance

Experimental Design and the Analysis of Variance PDF Author: Robert K. Leik
Publisher: SAGE Publications
ISBN: 1452250359
Category : Social Science
Languages : en
Pages : 209

Get Book Here

Book Description
Why is this Book a Useful Supplement for Your Statistics Course? Most core statistics texts cover subjects like analysis of variance and regression, but not in much detail. This book, as part of our Series in Research Methods and Statistics, provides you with the flexibility to cover ANOVA more thoroughly, but without financially overburdening your students.

Experimental Design, ANOVA, and Regression

Experimental Design, ANOVA, and Regression PDF Author: Richard A. Damon
Publisher: Harpercollins College Division
ISBN: 9780060414795
Category : Science
Languages : en
Pages : 508

Get Book Here

Book Description


Applied Statistics

Applied Statistics PDF Author: Olive Jean Dunn
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 472

Get Book Here

Book Description
Descriptive statistics. Statistical inference: populations and samples. Inference from a single sample. Samples from two populations. One-way analysis of variance: fixed effects model. Hierarchical or nested design. Two-way analysis of variance: fixed effects model. Three-way analysis of variance: fixed effects model. Factorial designs with each factor at two levels. Variable effects models. Repeated measure designs. Linear regression and correlation. Multiple regression: the fixed X model. Multiple regression and correlation analysis. Analysis of covariance. Data screening.

Design and Analysis of Experiments

Design and Analysis of Experiments PDF Author: Leonard C. Onyiah
Publisher: CRC Press
ISBN: 1420060554
Category : Mathematics
Languages : en
Pages : 852

Get Book Here

Book Description
Unlike other books on the modeling and analysis of experimental data, Design and Analysis of Experiments: Classical and Regression Approaches with SAS not only covers classical experimental design theory, it also explores regression approaches. Capitalizing on the availability of cutting-edge software, the author uses both manual meth

ANOVA and ANCOVA

ANOVA and ANCOVA PDF Author: Andrew Rutherford
Publisher: John Wiley & Sons
ISBN: 1118491696
Category : Mathematics
Languages : en
Pages : 358

Get Book Here

Book Description
Provides an in-depth treatment of ANOVA and ANCOVA techniques from a linear model perspective ANOVA and ANCOVA: A GLM Approach provides a contemporary look at the general linear model (GLM) approach to the analysis of variance (ANOVA) of one- and two-factor psychological experiments. With its organized and comprehensive presentation, the book successfully guides readers through conventional statistical concepts and how to interpret them in GLM terms, treating the main single- and multi-factor designs as they relate to ANOVA and ANCOVA. The book begins with a brief history of the separate development of ANOVA and regression analyses, and then goes on to demonstrate how both analyses are incorporated into the understanding of GLMs. This new edition now explains specific and multiple comparisons of experimental conditions before and after the Omnibus ANOVA, and describes the estimation of effect sizes and power analyses leading to the determination of appropriate sample sizes for experiments to be conducted. Topics that have been expanded upon and added include: Discussion of optimal experimental designs Different approaches to carrying out the simple effect analyses and pairwise comparisons with a focus on related and repeated measure analyses The issue of inflated Type 1 error due to multiple hypotheses testing Worked examples of Shaffer's R test, which accommodates logical relations amongst hypotheses ANOVA and ANCOVA: A GLM Approach, Second Edition is an excellent book for courses on linear modeling at the graduate level. It is also a suitable reference for researchers and practitioners in the fields of psychology and the biomedical and social sciences.