Econometrics of Risk

Econometrics of Risk PDF Author: Van-Nam Huynh
Publisher: Springer
ISBN: 3319134493
Category : Technology & Engineering
Languages : en
Pages : 486

Get Book Here

Book Description
This edited book contains several state-of-the-art papers devoted to econometrics of risk. Some papers provide theoretical analysis of the corresponding mathematical, statistical, computational, and economical models. Other papers describe applications of the novel risk-related econometric techniques to real-life economic situations. The book presents new methods developed just recently, in particular, methods using non-Gaussian heavy-tailed distributions, methods using non-Gaussian copulas to properly take into account dependence between different quantities, methods taking into account imprecise ("fuzzy") expert knowledge, and many other innovative techniques. This versatile volume helps practitioners to learn how to apply new techniques of econometrics of risk, and researchers to further improve the existing models and to come up with new ideas on how to best take into account economic risks.

Econometrics of Risk

Econometrics of Risk PDF Author: Van-Nam Huynh
Publisher: Springer
ISBN: 3319134493
Category : Technology & Engineering
Languages : en
Pages : 486

Get Book Here

Book Description
This edited book contains several state-of-the-art papers devoted to econometrics of risk. Some papers provide theoretical analysis of the corresponding mathematical, statistical, computational, and economical models. Other papers describe applications of the novel risk-related econometric techniques to real-life economic situations. The book presents new methods developed just recently, in particular, methods using non-Gaussian heavy-tailed distributions, methods using non-Gaussian copulas to properly take into account dependence between different quantities, methods taking into account imprecise ("fuzzy") expert knowledge, and many other innovative techniques. This versatile volume helps practitioners to learn how to apply new techniques of econometrics of risk, and researchers to further improve the existing models and to come up with new ideas on how to best take into account economic risks.

Quantitative Methods for Economics and Finance

Quantitative Methods for Economics and Finance PDF Author: J.E. Trinidad-Segovia
Publisher: MDPI
ISBN: 3036501967
Category : Business & Economics
Languages : en
Pages : 418

Get Book Here

Book Description
This book is a collection of papers for the Special Issue “Quantitative Methods for Economics and Finance” of the journal Mathematics. This Special Issue reflects on the latest developments in different fields of economics and finance where mathematics plays a significant role. The book gathers 19 papers on topics such as volatility clusters and volatility dynamic, forecasting, stocks, indexes, cryptocurrencies and commodities, trade agreements, the relationship between volume and price, trading strategies, efficiency, regression, utility models, fraud prediction, or intertemporal choice.

Mathematics and Computation

Mathematics and Computation PDF Author: Avi Wigderson
Publisher: Princeton University Press
ISBN: 0691189137
Category : Computers
Languages : en
Pages : 434

Get Book Here

Book Description
From the winner of the Turing Award and the Abel Prize, an introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography

The Evolution of Economic Institutions

The Evolution of Economic Institutions PDF Author: Geoffrey Martin Hodgson
Publisher: Edward Elgar Publishing
ISBN: 1847207030
Category : Business & Economics
Languages : en
Pages : 314

Get Book Here

Book Description
This volume documents in a unique manner the momentum the institutionalist, evolutionary research agenda has regained over the past two decades. The thought-provoking contributions come from prominent authors with a rather heterogeneous theoretical background. Nonetheless, they all convene in elaborating on issues that have always been at the core of the institutionalist agenda and show how these issues relate to cutting edge research in modern economics. Ulrich Witt, Max Planck Institute of Economics, Jena, Germany This excellent EAEPE Reader brings together a range of perspectives on the role of institutions in economics. It is very well structured, with parts on microeconomics, macroeconomics, markets and economic evolution. Each part contains chapters written by renowned experts in their respective fields and there is an authoritative introductory chapter by the editor. This Reader is invaluable for economics students and academic economists wishing to better understand how institutions and individual behaviours interact in the economic system. Much of standard economic analysis either ignores institutions or makes overly restrictive assumptions about them the authors in this book show, persuasively, that economics, without an adequate treatment of institutions and institutional change, is of very little scientific worth. John Foster, The University of Queensland, Australia This is a great set of essays. To get the richness they contain, the reader must be already familiar with the broad orientation of the literature on economic institutions. Given that background, I can think of no collection or essays that frame, illuminate, and probe modern institutional economics as well as does this set. Geoffrey Hodgson, who chose the collection, and the authors of the essays, are to be congratulated and thanked. Richard R. Nelson, Columbia University, US It is now widely acknowledged that institutions are a crucial factor in economic performance. Major developments have been made in our understanding of the nature and evolution of economic institutions in the last few years. This book brings together some key contributions in this area by leading internationally renowned scholars including Paul A. David, Christopher Freeman, Alan P. Kirman, Jan Kregel, Brian J. Loasby, J. Stanley Metcalfe, Bart Nooteboom and Ugo Pagano. This essential reader covers topics such as the relationship between institutions and individuals, institutions and economic development, the nature and role of markets, and the theory of institutional evolution. The book not only outlines cutting-edge developments in the field but also indicates key directions of future research for institutional and evolutionary economics. Vital reading on one of the most dynamic and rapidly growing areas of research today, The Evolution of Economic Institutions will be of great interest to researchers, students and lecturers in economics and business studies.

Beyond the Kalman Filter: Particle Filters for Tracking Applications

Beyond the Kalman Filter: Particle Filters for Tracking Applications PDF Author: Branko Ristic
Publisher: Artech House
ISBN: 9781580538510
Category : Technology & Engineering
Languages : en
Pages : 328

Get Book Here

Book Description
For most tracking applications the Kalman filter is reliable and efficient, but it is limited to a relatively restricted class of linear Gaussian problems. To solve problems beyond this restricted class, particle filters are proving to be dependable methods for stochastic dynamic estimation. Packed with 867 equations, this cutting-edge book introduces the latest advances in particle filter theory, discusses their relevance to defense surveillance systems, and examines defense-related applications of particle filters to nonlinear and non-Gaussian problems. With this hands-on guide, you can develop more accurate and reliable nonlinear filter designs and more precisely predict the performance of these designs. You can also apply particle filters to tracking a ballistic object, detection and tracking of stealthy targets, tracking through the blind Doppler zone, bi-static radar tracking, passive ranging (bearings-only tracking) of maneuvering targets, range-only tracking, terrain-aided tracking of ground vehicles, and group and extended object tracking.

Adaptive Learning of Polynomial Networks

Adaptive Learning of Polynomial Networks PDF Author: Nikolay Nikolaev
Publisher: Springer Science & Business Media
ISBN: 0387312404
Category : Computers
Languages : en
Pages : 329

Get Book Here

Book Description
This book delivers theoretical and practical knowledge for developing algorithms that infer linear and non-linear multivariate models, providing a methodology for inductive learning of polynomial neural network models (PNN) from data. The text emphasizes an organized model identification process by which to discover models that generalize and predict well. The book further facilitates the discovery of polynomial models for time-series prediction.

Machine Learning in Finance

Machine Learning in Finance PDF Author: Matthew F. Dixon
Publisher: Springer Nature
ISBN: 3030410684
Category : Business & Economics
Languages : en
Pages : 565

Get Book Here

Book Description
This book introduces machine learning methods in finance. It presents a unified treatment of machine learning and various statistical and computational disciplines in quantitative finance, such as financial econometrics and discrete time stochastic control, with an emphasis on how theory and hypothesis tests inform the choice of algorithm for financial data modeling and decision making. With the trend towards increasing computational resources and larger datasets, machine learning has grown into an important skillset for the finance industry. This book is written for advanced graduate students and academics in financial econometrics, mathematical finance and applied statistics, in addition to quants and data scientists in the field of quantitative finance. Machine Learning in Finance: From Theory to Practice is divided into three parts, each part covering theory and applications. The first presents supervised learning for cross-sectional data from both a Bayesian and frequentist perspective. The more advanced material places a firm emphasis on neural networks, including deep learning, as well as Gaussian processes, with examples in investment management and derivative modeling. The second part presents supervised learning for time series data, arguably the most common data type used in finance with examples in trading, stochastic volatility and fixed income modeling. Finally, the third part presents reinforcement learning and its applications in trading, investment and wealth management. Python code examples are provided to support the readers' understanding of the methodologies and applications. The book also includes more than 80 mathematical and programming exercises, with worked solutions available to instructors. As a bridge to research in this emergent field, the final chapter presents the frontiers of machine learning in finance from a researcher's perspective, highlighting how many well-known concepts in statistical physics are likely to emerge as important methodologies for machine learning in finance.

The Book of Alternative Data

The Book of Alternative Data PDF Author: Alexander Denev
Publisher: John Wiley & Sons
ISBN: 1119601797
Category : Business & Economics
Languages : en
Pages : 416

Get Book Here

Book Description
The first and only book to systematically address methodologies and processes of leveraging non-traditional information sources in the context of investing and risk management Harnessing non-traditional data sources to generate alpha, analyze markets, and forecast risk is a subject of intense interest for financial professionals. A growing number of regularly-held conferences on alternative data are being established, complemented by an upsurge in new papers on the subject. Alternative data is starting to be steadily incorporated by conventional institutional investors and risk managers throughout the financial world. Methodologies to analyze and extract value from alternative data, guidance on how to source data and integrate data flows within existing systems is currently not treated in literature. Filling this significant gap in knowledge, The Book of Alternative Data is the first and only book to offer a coherent, systematic treatment of the subject. This groundbreaking volume provides readers with a roadmap for navigating the complexities of an array of alternative data sources, and delivers the appropriate techniques to analyze them. The authors—leading experts in financial modeling, machine learning, and quantitative research and analytics—employ a step-by-step approach to guide readers through the dense jungle of generated data. A first-of-its kind treatment of alternative data types, sources, and methodologies, this innovative book: Provides an integrated modeling approach to extract value from multiple types of datasets Treats the processes needed to make alternative data signals operational Helps investors and risk managers rethink how they engage with alternative datasets Features practical use case studies in many different financial markets and real-world techniques Describes how to avoid potential pitfalls and missteps in starting the alternative data journey Explains how to integrate information from different datasets to maximize informational value The Book of Alternative Data is an indispensable resource for anyone wishing to analyze or monetize different non-traditional datasets, including Chief Investment Officers, Chief Risk Officers, risk professionals, investment professionals, traders, economists, and machine learning developers and users.

Algorithms and Architectures for Parallel Processing

Algorithms and Architectures for Parallel Processing PDF Author: Meikang Qiu
Publisher: Springer Nature
ISBN: 3030602486
Category : Mathematics
Languages : en
Pages : 722

Get Book Here

Book Description
This three-volume set LNCS 12452, 12453, and 12454 constitutes the proceedings of the 20th International Conference on Algorithms and Architectures for Parallel Processing, ICA3PP 2020, in New York City, NY, USA, in October 2020. The total of 142 full papers and 5 short papers included in this proceedings volumes was carefully reviewed and selected from 495 submissions. ICA3PP is covering the many dimensions of parallel algorithms and architectures, encompassing fundamental theoretical approaches, practical experimental projects, and commercial components and systems. As applications of computing systems have permeated in every aspects of daily life, the power of computing system has become increasingly critical. This conference provides a forum for academics and practitioners from countries around the world to exchange ideas for improving the efficiency, performance, reliability, security and interoperability of computing systems and applications. ICA3PP 2020 focus on two broad areas of parallel and distributed computing, i.e. architectures, algorithms and networks, and systems and applications.

An Introduction to Data

An Introduction to Data PDF Author: Francesco Corea
Publisher: Springer
ISBN: 3030044688
Category : Technology & Engineering
Languages : en
Pages : 131

Get Book Here

Book Description
This book reflects the author’s years of hands-on experience as an academic and practitioner. It is primarily intended for executives, managers and practitioners who want to redefine the way they think about artificial intelligence (AI) and other exponential technologies. Accordingly the book, which is structured as a collection of largely self-contained articles, includes both general strategic reflections and detailed sector-specific information. More concretely, it shares insights into what it means to work with AI and how to do it more efficiently; what it means to hire a data scientist and what new roles there are in the field; how to use AI in specific industries such as finance or insurance; how AI interacts with other technologies such as blockchain; and, in closing, a review of the use of AI in venture capital, as well as a snapshot of acceleration programs for AI companies.