Analysis of Septic-tank Density for Three Areas in Cedar Valley, Iron County, Utah

Analysis of Septic-tank Density for Three Areas in Cedar Valley, Iron County, Utah PDF Author: Mike Lowe
Publisher: Utah Geological Survey
ISBN: 1557916500
Category : Science
Languages : en
Pages : 73

Get Book Here

Book Description
The purpose of this study is to assess the impact of septic tank soil-absorption systems on ground-water quality for three areas in Cedar Valley where septic tank soil-absorption systems are typically used for wastewater disposal. These areas have some existing development, but we anticipate that there will be additional development in the future. The Utah Geological Survey evaluated the potential impact of the projected potential development on ground-water quality based on septic-tank-system densities using a mass-balance approach similar to an analysis conducted by Hansen, Allen, and Luce for Heber and Round Valleys, Wasatch County, Utah. The selection of the evaluated areas was made in consultation with local government officials. This study may be used as a model for other evaluations of the impact of proposed subdivision site(s) on ground-water quality and allow planners to more effectively determine appropriate development densities.

Analysis of Septic-tank Density for Three Areas in Cedar Valley, Iron County, Utah

Analysis of Septic-tank Density for Three Areas in Cedar Valley, Iron County, Utah PDF Author: Mike Lowe
Publisher: Utah Geological Survey
ISBN: 1557916500
Category : Science
Languages : en
Pages : 73

Get Book Here

Book Description
The purpose of this study is to assess the impact of septic tank soil-absorption systems on ground-water quality for three areas in Cedar Valley where septic tank soil-absorption systems are typically used for wastewater disposal. These areas have some existing development, but we anticipate that there will be additional development in the future. The Utah Geological Survey evaluated the potential impact of the projected potential development on ground-water quality based on septic-tank-system densities using a mass-balance approach similar to an analysis conducted by Hansen, Allen, and Luce for Heber and Round Valleys, Wasatch County, Utah. The selection of the evaluated areas was made in consultation with local government officials. This study may be used as a model for other evaluations of the impact of proposed subdivision site(s) on ground-water quality and allow planners to more effectively determine appropriate development densities.

The Potential Impact of Septic Tank Soil-absorption Systems on Water Quality in the Principal Valley-fill Aquifer, Cedar Valley, Iron County, Utah

The Potential Impact of Septic Tank Soil-absorption Systems on Water Quality in the Principal Valley-fill Aquifer, Cedar Valley, Iron County, Utah PDF Author: Janae Wallace
Publisher:
ISBN:
Category : Groundwater
Languages : en
Pages : 22

Get Book Here

Book Description


Publications

Publications PDF Author: Utah Geological Survey
Publisher:
ISBN:
Category :
Languages : en
Pages : 32

Get Book Here

Book Description


Ground-water Quality Classification and Recommended Septic Tank Soil-absorption-system Density Maps, Castle Valley, Grand County, Utah

Ground-water Quality Classification and Recommended Septic Tank Soil-absorption-system Density Maps, Castle Valley, Grand County, Utah PDF Author: Mike Lowe
Publisher: Utah Geological Survey
ISBN: 1557917140
Category : Groundwater
Languages : en
Pages : 57

Get Book Here

Book Description
"This CD-ROM contains a 30 page report with 22 page appendix, and seven maps at 1:15,000 to 1:30,000 scale in easily readable PDF format that address ground-water quality in Castle Valley's valley-fill aquifer and provide recommendations for septic tank soil-absorption-system density based on potential water-quality degradation associated with use of these systems. The maps are described in detail in the report and show geology, valley-fill thickness, total-dissolved-solids concentration, nitrate concentration, ground-water quality class, potential containment sources, and recommended lot size."--Sticker on back of case.

Survey Notes

Survey Notes PDF Author:
Publisher:
ISBN:
Category : Geology
Languages : en
Pages : 54

Get Book Here

Book Description


Water-quality Assessment of the Principal Valley-fill Aquifers in the Southern Sanpete and Central Sevier Valleys, Sanpete County, Utah

Water-quality Assessment of the Principal Valley-fill Aquifers in the Southern Sanpete and Central Sevier Valleys, Sanpete County, Utah PDF Author: Janae Wallace
Publisher: Utah Geological Survey
ISBN: 1557918287
Category : Science
Languages : en
Pages : 139

Get Book Here

Book Description
"This study (132 p., 6 pl.) assesses water quality in the aquifers in the southern Sanpete and central Sevier Valleys to determine likely sources of nitrate pollution and determine the relative age of high-nitrate water"--Back label of container.

Evaluation of Potential Geologic Sources of Nitrate Contamination in Ground Water, Cedar Valley, Iron County, Utah with Emphasis on the Enoch Area

Evaluation of Potential Geologic Sources of Nitrate Contamination in Ground Water, Cedar Valley, Iron County, Utah with Emphasis on the Enoch Area PDF Author: Mike Lowe
Publisher:
ISBN:
Category : Political Science
Languages : en
Pages : 62

Get Book Here

Book Description


AQUIFER STORAGE AND RECOVERY IN MILLVILLE, CACHE COUNTY, UTAH

AQUIFER STORAGE AND RECOVERY IN MILLVILLE, CACHE COUNTY, UTAH PDF Author: Paul Inkenbrandt
Publisher: Utah Geological Survey
ISBN:
Category :
Languages : en
Pages : 94

Get Book Here

Book Description
This study is an investigation of the feasibility of an aquifer storage and recovery project using the existing water supply infrastructure of the city of Millville, Utah. The project involved injecting water from a public water supply spring into a public water supply well. Geochemical analysis indicates that the major ion chemistry of the spring water is very similar to that of the principal aquifer, however, the spring water would likely cause minor geochemical changes in the groundwater due to oxidation. The study also showed that the injection well had elevated nitrate concentration which is likely due to septic systems in the area. Overall, the pilot tests showed that injection of water for storage would not be detrimental to the principal aquifer, which has significant storage abilities beyond the capacity of Millville’s water system; however elevated nitrate in the aquifer is a problem that should be addressed.

Special Study

Special Study PDF Author:
Publisher:
ISBN:
Category : Geology
Languages : en
Pages : 380

Get Book Here

Book Description


Investigation of land subsidence and earth fissures in Cedar Valley, Iron County, Utah

Investigation of land subsidence and earth fissures in Cedar Valley, Iron County, Utah PDF Author: Paul Inkenbrandt
Publisher: Utah Geological Survey
ISBN: 1557918910
Category : Base flow (Hydrology).
Languages : en
Pages : 122

Get Book Here

Book Description
This 116-page report presents the results of an investigation by the Utah Geological Survey of land subsidence and earth fissures in Cedar Valley, Iron County, Utah. Basin-fill sediments of the Cedar Valley Aquifer contain a high percentage of fine-grained material susceptible to compaction upon dewatering. Groundwater discharge in excess of recharge (groundwater mining) has lowered the potentiometric surface in Cedar Valley as much as 114 feet since 1939. Groundwater mining has caused permanent compaction of fine-grained sediments of the Cedar Valley aquifer, which has caused the land surface to subside, and a minimum of 8.3 miles of earth fissures to form. Recently acquired interferometric synthetic aperture radar imagery shows that land subsidence has affected approximately 100 mi² in Cedar Valley, but a lack of accurate historical benchmark elevation data over much of the valley prevents its detailed quantification. Continued groundwater mining and resultant subsidence will likely cause existing fissures to lengthen and new fissures to form which may eventually impact developed areas in Cedar Valley. This report also includes possible aquifer management options to help mitigate subsidence and fissure formation, and recommended guidelines for conducting subsidence-related hazard investigations prior to development.