Analysis of Circular Geogrid-reinforced Soil-steel Bridge

Analysis of Circular Geogrid-reinforced Soil-steel Bridge PDF Author: André John Kendall Bom
Publisher:
ISBN:
Category :
Languages : en
Pages : 406

Get Book Here

Book Description

Analysis of Circular Geogrid-reinforced Soil-steel Bridge

Analysis of Circular Geogrid-reinforced Soil-steel Bridge PDF Author: André John Kendall Bom
Publisher:
ISBN:
Category :
Languages : en
Pages : 406

Get Book Here

Book Description


Advances in Reinforced Soil Structures

Advances in Reinforced Soil Structures PDF Author: Sanjay Kumar Shukla
Publisher: Springer
ISBN: 3319635700
Category : Science
Languages : en
Pages : 169

Get Book Here

Book Description
Soil reinforcement is a very useful technique to construct several cost-effective soil structures in an environmentally friendly and sustainable manner. The most commonly used reinforcement materials are galvanised steel strips, geosynthetics in the form of woven geotextiles, geogrids and geocomposites, and fibres from natural and waste products. In recent years, there have been advances in the area of soil reinforcement, especially in the utilization of the technique in field projects. The researchers have also been working to understand the behaviour of reinforced soil considering the field challenges of reinforced soil structures. This edited volume contains contributions on advances in reinforced soil structures, mainly flexible pavements, footings, embankments, stone columns/piles, and slopes, as covered in the subject areas of geosynthetic engineering and fibre-reinforced soil engineering. The first paper by Ioannis N. Markou presents the details of sand-geotextile interaction based on interface tests with conventional and large-scale direct shear equipment. The second paper by Atef Ben Othmen and Mounir Bouassida examines the interface properties of geosynthetic reinforcement by carrying out inclined plane tests under low confinement adapted to landfill covers conditions. The third paper by J.N. Jha, S.K. Shukla, A.K. Choudhary, K.S. Gill1 and B.P. Verma deals with the triaxial compression behaviour of soil reinforced with steel and aluminium solid plates in horizontal layers. The fourth paper by M. Muthukumar and S.K. Shukla describes the swelling and shrinkage behaviour of expansive soil blended with lime and fibres. The fifth paper by S.G. Shah, A.C. Bhogayata and S.K. Shukla provides the test results of shear strength of cohesionless soil reinforced with metalized plastic waste. The sixth paper by Bouacha Nadjet compares the geotextile-reinforced and geogrid-reinforced flexible pavements based on numerical analyses. The seventh paper by S. Kumar, C.H. Solanki, J.B. Patel, P.B. Sudevan and P.M. Chaudhary reports the results of laboratory model tests carried out on a square footing resting on prestressed geotextile reinforced sand. The eighth paper by Sanoop G and Satyajit Patel presents the numerical studies on ground improvement using geosynthetic reinforced sand layer. The ninth paper by ------------------- discusses the bearing capacity prediction of inclined loaded strip footing on reinforced sand by ANN. The tenth paper by Mohamad B.D. Elsawy presents the numerical simulation of an embankment, constructed on reinforced soft soil with conventional stone piles. The eleventh paper by N.O. Sheta and R.P. Frizzi deals with the analysis, design, construction and monitoring of a geosynthetics-reinforced-earth pile-supported embankment serving as an access road. The twelfth paper by S. Banerjee, A. Adhikari, S. Chatterjee and D. Das provides the details of a case study on reinforced slope on soft soil for the approach of a major bridge. We do hope the researchers and the engineers may find the contributions in this volume very useful. This volume is part of the proceedings of the 1st GeoMEast International Congress and Exhibition on Sustainable Civil Infrastructures, Egypt 2017.

Geosynthetic Reinforced Soil (GRS) Walls

Geosynthetic Reinforced Soil (GRS) Walls PDF Author: Jonathan T. H. Wu
Publisher: John Wiley & Sons
ISBN: 1119375843
Category : Technology & Engineering
Languages : en
Pages : 414

Get Book Here

Book Description
The first book to provide a detailed overview of Geosynthetic Reinforced Soil Walls Geosynthetic Reinforced Soil (GRS) Walls deploy horizontal layers of closely spaced tensile inclusion in the fill material to achieve stability of a soil mass. GRS walls are more adaptable to different environmental conditions, more economical, and offer high performance in a wide range of transportation infrastructure applications. This book addresses both GRS and GMSE, with a much stronger emphasis on the former. For completeness, it begins with a review of shear strength of soils and classical earth pressure theories. It then goes on to examine the use of geosynthetics as reinforcement, and followed by the load-deformation behavior of GRS mass as a soil-geosynthetic composite, reinforcing mechanisms of GRS, and GRS walls with different types of facing. Finally, the book finishes by covering design concepts with design examples for different loading and geometric conditions, and the construction of GRS walls, including typical construction procedures and general construction guidelines. The number of GRS walls and abutments built to date is relatively low due to lack of understanding of GRS. While failure rate of GMSE has been estimated to be around 5%, failure of GRS has been found to be practically nil, with studies suggesting many advantages, including a smaller susceptibility to long-term creep and stronger resistance to seismic loads when well-compacted granular fill is employed. Geosynthetic Reinforced Soil (GRS) Walls will serve as an excellent guide or reference for wall projects such as transportation infrastructure—including roadways, bridges, retaining walls, and earth slopes—that are in dire need of repair and replacement in the U.S. and abroad. Covers both GRS and GMSE (MSE with geosynthetics as reinforcement); with much greater emphasis on GRS walls Showcases reinforcing mechanisms, engineering behavior, and design concepts of GRS and includes many step-by-step design examples Features information on typical construction procedures and general construction guidelines Includes hundreds of line drawings and photos Geosynthetic Reinforced Soil (GRS) Walls is an important book for practicing geotechnical engineers and structural engineers, as well as for advanced students of civil, structural, and geotechnical engineering.

Performance of Reinforced Soil Structures

Performance of Reinforced Soil Structures PDF Author: Alan McGown
Publisher: Thomas Telford
ISBN: 9780727716378
Category : Science
Languages : en
Pages : 628

Get Book Here

Book Description
The following is just a selection of the contents - Theory and design related to the performance of reinforced soil structures - A study of the influence of soil on the reinforcement load in polymer grid reinforced soil structures - Cellular retaining walls reinforced by geosynthetics:behaviour and design - The results of pull out tests caried out in PFA on a reinforced and unreinforced soil walls - In-situ techniques of reinforced soil - Design and field test on reinforced cut slope - Reinforcing a sand slope surrorting a footing using steel bars - Discussion of papers in session 4 - Effect of reinforcement in embankment - Session Summary

Earth Pressure and Earth-Retaining Structures, Second Edition

Earth Pressure and Earth-Retaining Structures, Second Edition PDF Author: Chris R.I. Clayton
Publisher: CRC Press
ISBN: 075140067X
Category : Architecture
Languages : en
Pages : 414

Get Book Here

Book Description
Retaining structures form an important component of many civil engineering and geotechnical engineering projects. Careful design and construction of these structures is essential for safety and longevity. This new edition provides significantly more support for non-specialists, background to uncertainty of parameters and partial factor issues that underpin recent codes (e.g. Eurocode 7), and comprehensive coverage of the principles of the geotechnical design of gravity walls, embedded walls and composite structures. It is written for practising geotechnical, civil and structural engineers; and forms a reference for engineering geologists, geotechnical researchers and undergraduate civil engineering students.

Interaction Properties of Geogrids in Reinforced-soil Walls, Testing and Analysis

Interaction Properties of Geogrids in Reinforced-soil Walls, Testing and Analysis PDF Author: Khalid A. Farrag
Publisher:
ISBN:
Category : Geogrids
Languages : en
Pages : 534

Get Book Here

Book Description


Analysis of the Field Behavior of a Geosynthetic Reinforced Soil Integrated Bridge System During Construction and Operation

Analysis of the Field Behavior of a Geosynthetic Reinforced Soil Integrated Bridge System During Construction and Operation PDF Author: Majid Talebi
Publisher:
ISBN: 9781369595734
Category : Bridges
Languages : en
Pages : 475

Get Book Here

Book Description
The Geosynthetic Reinforced Soil Integrated Bridge System (GRS-IBS) is a composite bridge structure built using GRS abutments and prefabricated bridge superstructure elements. This accelerated bridge construction technology has been developed and promoted by researchers and engineers from the United States of America's Federal Highway Administration (FHWA). GRS-IBS technology has proven itself useful for rapid, cost-effective bridge construction in other regions of the United States. Consequently, the Delaware Department of Transportation (DelDOT) constructed the first GRS-IBS in the state of Delaware (Br. 1-366) in 2013 to explore the effectiveness of this technology for use within their own bridge inventory. ☐ This dissertation provides an overview of the design, construction, and monitoring process that was utilized to deploy the first constructed GRS-IBS in Delaware. Recorded performance data for the structure from the time of construction, live load testing, and over two years of in-service operation were collected using different types of instruments and analyzed. ☐ Details regarding GRS-IBS technology, Br. 1-366 project requirements, the design and construction procedure, and the instrumentation system that was utilized for monitoring the health of the structure have been presented in Chapters 1 through 3. ☐ The collected engineering data from different phases of the project are presented in Chapter 4, including construction, live load testing, and over two years of in-service operation. ☐ Since the amount of collected data was quite large, some techniques were utilized to manage and filter the recorded data, as described in Chapter 5. A technique for statistical correlation analysis is also presented in this chapter, which was found to be very useful for developing an understanding of interrelationships between various sensor measured values. The correlation between different types of readings are investigated using this technique, and the corresponding findings from this analysis are presented in this chapter. ☐ A strong effect of temperature on the measured strain readings was observed, as discussed in Chapter 5. Chapter 6 presents a correction procedure to account for the effects of temperature on the measured strain values. The use of this correction technique allows for significant refinement of the measured strain values within the GRS abutment. ☐ The details and findings from a robust live load testing program are presented in Chapter 7. More specifically, the effect of the live load on the strain in the abutments and the pressure within and beneath the abutments have been investigated in this chapter. It is shown that the structure was quite stable during each of the live load test events, with the induced pressure and deformation by the live loads being quite low, and with little corresponding strain being measured within the GRS abutments. ☐ The applied pressure distribution beneath the west GRS abutment foundation was investigated during construction and live load testing, as described in Chapter 8. It is shown that the pressure distribution is not uniform and the maximum pressure is measured beneath the facing wall. An approach is suggested in this chapter to predict the applied pressure induced by the abutment and the surcharge loads. ☐ The long term performance of the structure is analyzed in Chapter 9 using the data collected by different sensors over two years of in-service operation. The data analysis shows the effect of the precipitation amount and type (rain and snow) on the abutment water content. The abutment performance that occurs as a result of changes in water content appears satisfactory. Creep deformation did occur in the abutment, but its overall magnitude was quite small over the monitoring period, with the maximum strain being less than 0.5%. The lateral deflection and settlement of the facing walls was small, less than 12 mm. The concrete bridge deformation was also small, with the measured results being affected by the air temperature change. The abutment temperature distribution was different in hot and cold weather. The clay foundation beneath the abutment experienced some minor creep deformation. The results also indicated the effect of temperature on the measured foundation and abutment pressure. ☐ Finally, the overall conclusions of this dissertation are presented in Chapter 10 and some recommendations are made for future research.

Soil-Steel Bridges

Soil-Steel Bridges PDF Author: Damian Beben
Publisher: Springer Nature
ISBN: 3030347885
Category : Technology & Engineering
Languages : en
Pages : 224

Get Book Here

Book Description
The primary objective of this book is to provide designers with a set of analysis and design specifications for soil-steel bridges and culverts, also called flexible structures. Brief but informative, this guide is based on a quick look up approach to code applications, design and analysis methods/calculations as well as applications and solved examples. The book addresses the unique aspects of soil-steel bridges: design and analysis as well as examples of applications, numerical analysis and modeling techniques, corrosion and durability problems, service life and maintenance, and impact of moving loads.

Performance Monitoring and Analysis of Geosynthetic Reinforced Soil Integrated Bridge Systems (GRS-IBS) in Oklahoma

Performance Monitoring and Analysis of Geosynthetic Reinforced Soil Integrated Bridge Systems (GRS-IBS) in Oklahoma PDF Author: Luis Pena Castaneda
Publisher:
ISBN:
Category : Bridges
Languages : en
Pages : 442

Get Book Here

Book Description


Innovative Infrastructure Solutions using Geosynthetics

Innovative Infrastructure Solutions using Geosynthetics PDF Author: Fumio Tatsouka
Publisher: Springer Nature
ISBN: 3030342425
Category : Science
Languages : en
Pages : 162

Get Book Here

Book Description
This book contains contributions on advances in geosynthetics engineering. Soil reinforcement is a very useful technique to construct several cost-effective soil structures in an environmentally friendly and sustainable manner. The most commonly used reinforcement materials are galvanized steel strips, geosynthetics in the form of woven geotextiles, geogrids and geocomposites, and fibers from natural and waste products. In recent years, there have been advances in the area of soil reinforcement, especially in the utilization of the technique in field projects. The researchers have also been working to understand the behaviour of reinforced soil considering the field challenges of reinforced soil structures.