Author: Dietrich H. Nies
Publisher: Springer Science & Business Media
ISBN: 3540697713
Category : Science
Languages : en
Pages : 455
Book Description
This book covers allocation of metals in cells, metal transporter, storage and metalloregulatory proteins, cellular responses to metal ion stress, transcription of genes involved in metal ion homeostasis, uptake of essential metals, metal efflux and other detoxification mechanisms. The book also discusses metal bioreporters for the nanomolar range of concentration and tools to address the metallome. In addition, coverage details specific metals.
Molecular Microbiology of Heavy Metals
Author: Dietrich H. Nies
Publisher: Springer Science & Business Media
ISBN: 3540697713
Category : Science
Languages : en
Pages : 455
Book Description
This book covers allocation of metals in cells, metal transporter, storage and metalloregulatory proteins, cellular responses to metal ion stress, transcription of genes involved in metal ion homeostasis, uptake of essential metals, metal efflux and other detoxification mechanisms. The book also discusses metal bioreporters for the nanomolar range of concentration and tools to address the metallome. In addition, coverage details specific metals.
Publisher: Springer Science & Business Media
ISBN: 3540697713
Category : Science
Languages : en
Pages : 455
Book Description
This book covers allocation of metals in cells, metal transporter, storage and metalloregulatory proteins, cellular responses to metal ion stress, transcription of genes involved in metal ion homeostasis, uptake of essential metals, metal efflux and other detoxification mechanisms. The book also discusses metal bioreporters for the nanomolar range of concentration and tools to address the metallome. In addition, coverage details specific metals.
RNA Infrastructure and Networks
Author: Lesley J. Collins
Publisher: Springer Science & Business Media
ISBN: 1461403324
Category : Medical
Languages : en
Pages : 297
Book Description
RNAs form complexes with proteins and other RNAs. The RNA‐infrastructure represents the spatiotemporal interaction of these proteins and RNAs in a cell‐wide network. RNA Infrastructure and Networks brings together these ideas to illustrate the scope of RNA‐based biology, and how connecting RNA mechanisms is a powerful tool to investigate regulatory pathways. This book is but a taste of the wide range of RNA‐based mechanisms that connect in the RNA infrastructure.
Publisher: Springer Science & Business Media
ISBN: 1461403324
Category : Medical
Languages : en
Pages : 297
Book Description
RNAs form complexes with proteins and other RNAs. The RNA‐infrastructure represents the spatiotemporal interaction of these proteins and RNAs in a cell‐wide network. RNA Infrastructure and Networks brings together these ideas to illustrate the scope of RNA‐based biology, and how connecting RNA mechanisms is a powerful tool to investigate regulatory pathways. This book is but a taste of the wide range of RNA‐based mechanisms that connect in the RNA infrastructure.
Lasso Peptides
Author: Yanyan Li
Publisher: Springer
ISBN: 1493910108
Category : Medical
Languages : en
Pages : 113
Book Description
Lasso peptides form a growing family of fascinating ribosomally-synthesized and post-translationally modified peptides produced by bacteria. They contain 15 to 24 residues and share a unique interlocked topology that involves an N-terminal 7 to 9-residue macrolactam ring where the C-terminal tail is threaded and irreversibly trapped. The ring results from the condensation of the N-terminal amino group with a side-chain carboxylate of a glutamate at position 8 or 9, or an aspartate at position 7, 8 or 9. The trapping of the tail involves bulky amino acids located in the tail below and above the ring and/or disulfide bridges connecting the ring and the tail. Lasso peptides are subdivided into three subtypes depending on the absence (class II) or presence of one (class III) or two (class I) disulfide bridges. The lasso topology results in highly compact structures that give to lasso peptides an extraordinary stability towards both protease degradation and denaturing conditions. Lasso peptides are generally receptor antagonists, enzyme inhibitors and/or antibacterial or antiviral (anti-HIV) agents. The lasso scaffold and the associated biological activities shown by lasso peptides on different key targets make them promising molecules with high therapeutic potential. Their application in drug design has been exemplified by the development of an integrin antagonist based on a lasso peptide scaffold. The biosynthesis machinery of lasso peptides is therefore of high biotechnological interest, especially since such highly compact and stable structures have to date revealed inaccessible by peptide synthesis. Lasso peptides are produced from a linear precursor LasA, which undergoes a maturation process involving several steps, in particular cleavage of the leader peptide and cyclization. The post-translational modifications are ensured by a dedicated enzymatic machinery, which is composed of an ATP-dependent cysteine protease (LasB) and a lactam synthetase (LasC) that form an enzymatic complex called lasso synthetase. Microcin J25, produced by Escherichia coli AY25, is the archetype of lasso peptides and the most extensively studied. To date only around forty lasso peptides have been isolated, but genome mining approaches have revealed that they are widely distributed among Proteobacteria and Actinobacteria, particularly in Streptomyces, making available a rich resource of novel lasso peptides and enzyme machineries towards lasso topologies.
Publisher: Springer
ISBN: 1493910108
Category : Medical
Languages : en
Pages : 113
Book Description
Lasso peptides form a growing family of fascinating ribosomally-synthesized and post-translationally modified peptides produced by bacteria. They contain 15 to 24 residues and share a unique interlocked topology that involves an N-terminal 7 to 9-residue macrolactam ring where the C-terminal tail is threaded and irreversibly trapped. The ring results from the condensation of the N-terminal amino group with a side-chain carboxylate of a glutamate at position 8 or 9, or an aspartate at position 7, 8 or 9. The trapping of the tail involves bulky amino acids located in the tail below and above the ring and/or disulfide bridges connecting the ring and the tail. Lasso peptides are subdivided into three subtypes depending on the absence (class II) or presence of one (class III) or two (class I) disulfide bridges. The lasso topology results in highly compact structures that give to lasso peptides an extraordinary stability towards both protease degradation and denaturing conditions. Lasso peptides are generally receptor antagonists, enzyme inhibitors and/or antibacterial or antiviral (anti-HIV) agents. The lasso scaffold and the associated biological activities shown by lasso peptides on different key targets make them promising molecules with high therapeutic potential. Their application in drug design has been exemplified by the development of an integrin antagonist based on a lasso peptide scaffold. The biosynthesis machinery of lasso peptides is therefore of high biotechnological interest, especially since such highly compact and stable structures have to date revealed inaccessible by peptide synthesis. Lasso peptides are produced from a linear precursor LasA, which undergoes a maturation process involving several steps, in particular cleavage of the leader peptide and cyclization. The post-translational modifications are ensured by a dedicated enzymatic machinery, which is composed of an ATP-dependent cysteine protease (LasB) and a lactam synthetase (LasC) that form an enzymatic complex called lasso synthetase. Microcin J25, produced by Escherichia coli AY25, is the archetype of lasso peptides and the most extensively studied. To date only around forty lasso peptides have been isolated, but genome mining approaches have revealed that they are widely distributed among Proteobacteria and Actinobacteria, particularly in Streptomyces, making available a rich resource of novel lasso peptides and enzyme machineries towards lasso topologies.
Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria
Author: Frans J. de Bruijn
Publisher: John Wiley & Sons
ISBN: 1119004896
Category : Science
Languages : en
Pages : 1472
Book Description
Bacteria in various habitats are subject to continuously changing environmental conditions, such as nutrient deprivation, heat and cold stress, UV radiation, oxidative stress, dessication, acid stress, nitrosative stress, cell envelope stress, heavy metal exposure, osmotic stress, and others. In order to survive, they have to respond to these conditions by adapting their physiology through sometimes drastic changes in gene expression. In addition they may adapt by changing their morphology, forming biofilms, fruiting bodies or spores, filaments, Viable But Not Culturable (VBNC) cells or moving away from stress compounds via chemotaxis. Changes in gene expression constitute the main component of the bacterial response to stress and environmental changes, and involve a myriad of different mechanisms, including (alternative) sigma factors, bi- or tri-component regulatory systems, small non-coding RNA’s, chaperones, CHRIS-Cas systems, DNA repair, toxin-antitoxin systems, the stringent response, efflux pumps, alarmones, and modulation of the cell envelope or membranes, to name a few. Many regulatory elements are conserved in different bacteria; however there are endless variations on the theme and novel elements of gene regulation in bacteria inhabiting particular environments are constantly being discovered. Especially in (pathogenic) bacteria colonizing the human body a plethora of bacterial responses to innate stresses such as pH, reactive nitrogen and oxygen species and antibiotic stress are being described. An attempt is made to not only cover model systems but give a broad overview of the stress-responsive regulatory systems in a variety of bacteria, including medically important bacteria, where elucidation of certain aspects of these systems could lead to treatment strategies of the pathogens. Many of the regulatory systems being uncovered are specific, but there is also considerable “cross-talk” between different circuits. Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria is a comprehensive two-volume work bringing together both review and original research articles on key topics in stress and environmental control of gene expression in bacteria. Volume One contains key overview chapters, as well as content on one/two/three component regulatory systems and stress responses, sigma factors and stress responses, small non-coding RNAs and stress responses, toxin-antitoxin systems and stress responses, stringent response to stress, responses to UV irradiation, SOS and double stranded systems repair systems and stress, adaptation to both oxidative and osmotic stress, and desiccation tolerance and drought stress. Volume Two covers heat shock responses, chaperonins and stress, cold shock responses, adaptation to acid stress, nitrosative stress, and envelope stress, as well as iron homeostasis, metal resistance, quorum sensing, chemotaxis and biofilm formation, and viable but not culturable (VBNC) cells. Covering the full breadth of current stress and environmental control of gene expression studies and expanding it towards future advances in the field, these two volumes are a one-stop reference for (non) medical molecular geneticists interested in gene regulation under stress.
Publisher: John Wiley & Sons
ISBN: 1119004896
Category : Science
Languages : en
Pages : 1472
Book Description
Bacteria in various habitats are subject to continuously changing environmental conditions, such as nutrient deprivation, heat and cold stress, UV radiation, oxidative stress, dessication, acid stress, nitrosative stress, cell envelope stress, heavy metal exposure, osmotic stress, and others. In order to survive, they have to respond to these conditions by adapting their physiology through sometimes drastic changes in gene expression. In addition they may adapt by changing their morphology, forming biofilms, fruiting bodies or spores, filaments, Viable But Not Culturable (VBNC) cells or moving away from stress compounds via chemotaxis. Changes in gene expression constitute the main component of the bacterial response to stress and environmental changes, and involve a myriad of different mechanisms, including (alternative) sigma factors, bi- or tri-component regulatory systems, small non-coding RNA’s, chaperones, CHRIS-Cas systems, DNA repair, toxin-antitoxin systems, the stringent response, efflux pumps, alarmones, and modulation of the cell envelope or membranes, to name a few. Many regulatory elements are conserved in different bacteria; however there are endless variations on the theme and novel elements of gene regulation in bacteria inhabiting particular environments are constantly being discovered. Especially in (pathogenic) bacteria colonizing the human body a plethora of bacterial responses to innate stresses such as pH, reactive nitrogen and oxygen species and antibiotic stress are being described. An attempt is made to not only cover model systems but give a broad overview of the stress-responsive regulatory systems in a variety of bacteria, including medically important bacteria, where elucidation of certain aspects of these systems could lead to treatment strategies of the pathogens. Many of the regulatory systems being uncovered are specific, but there is also considerable “cross-talk” between different circuits. Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria is a comprehensive two-volume work bringing together both review and original research articles on key topics in stress and environmental control of gene expression in bacteria. Volume One contains key overview chapters, as well as content on one/two/three component regulatory systems and stress responses, sigma factors and stress responses, small non-coding RNAs and stress responses, toxin-antitoxin systems and stress responses, stringent response to stress, responses to UV irradiation, SOS and double stranded systems repair systems and stress, adaptation to both oxidative and osmotic stress, and desiccation tolerance and drought stress. Volume Two covers heat shock responses, chaperonins and stress, cold shock responses, adaptation to acid stress, nitrosative stress, and envelope stress, as well as iron homeostasis, metal resistance, quorum sensing, chemotaxis and biofilm formation, and viable but not culturable (VBNC) cells. Covering the full breadth of current stress and environmental control of gene expression studies and expanding it towards future advances in the field, these two volumes are a one-stop reference for (non) medical molecular geneticists interested in gene regulation under stress.
Prokaryotic Cytoskeletons
Author: Jan Löwe
Publisher: Springer
ISBN: 331953047X
Category : Science
Languages : en
Pages : 457
Book Description
This book describes the structures and functions of active protein filaments, found in bacteria and archaea, and now known to perform crucial roles in cell division and intra-cellular motility, as well as being essential for controlling cell shape and growth. These roles are possible because the cytoskeletal and cytomotive filaments provide long range order from small subunits. Studies of these filaments are therefore of central importance to understanding prokaryotic cell biology. The wide variation in subunit and polymer structure and its relationship with the range of functions also provide important insights into cell evolution, including the emergence of eukaryotic cells. Individual chapters, written by leading researchers, review the great advances made in the past 20-25 years, and still ongoing, to discover the architectures, dynamics and roles of filaments found in relevant model organisms. Others describe one of the families of dynamic filaments found in many species. The most common types of filament are deeply related to eukaryotic cytoskeletal proteins, notably actin and tubulin that polymerise and depolymerise under the control of nucleotide hydrolysis. Related systems are found to perform a variety of roles, depending on the organisms. Surprisingly, prokaryotes all lack the molecular motors associated with eukaryotic F-actin and microtubules. Archaea, but not bacteria, also have active filaments related to the eukaryotic ESCRT system. Non-dynamic fibres, including intermediate filament-like structures, are known to occur in some bacteria.. Details of known filament structures are discussed and related to what has been established about their molecular mechanisms, including current controversies. The final chapter covers the use of some of these dynamic filaments in Systems Biology research. The level of information in all chapters is suitable both for active researchers and for advanced students in courses involving bacterial or archaeal physiology, molecular microbiology, structural cell biology, molecular motility or evolution. Chapter 3 of this book is open access under a CC BY 4.0 license.
Publisher: Springer
ISBN: 331953047X
Category : Science
Languages : en
Pages : 457
Book Description
This book describes the structures and functions of active protein filaments, found in bacteria and archaea, and now known to perform crucial roles in cell division and intra-cellular motility, as well as being essential for controlling cell shape and growth. These roles are possible because the cytoskeletal and cytomotive filaments provide long range order from small subunits. Studies of these filaments are therefore of central importance to understanding prokaryotic cell biology. The wide variation in subunit and polymer structure and its relationship with the range of functions also provide important insights into cell evolution, including the emergence of eukaryotic cells. Individual chapters, written by leading researchers, review the great advances made in the past 20-25 years, and still ongoing, to discover the architectures, dynamics and roles of filaments found in relevant model organisms. Others describe one of the families of dynamic filaments found in many species. The most common types of filament are deeply related to eukaryotic cytoskeletal proteins, notably actin and tubulin that polymerise and depolymerise under the control of nucleotide hydrolysis. Related systems are found to perform a variety of roles, depending on the organisms. Surprisingly, prokaryotes all lack the molecular motors associated with eukaryotic F-actin and microtubules. Archaea, but not bacteria, also have active filaments related to the eukaryotic ESCRT system. Non-dynamic fibres, including intermediate filament-like structures, are known to occur in some bacteria.. Details of known filament structures are discussed and related to what has been established about their molecular mechanisms, including current controversies. The final chapter covers the use of some of these dynamic filaments in Systems Biology research. The level of information in all chapters is suitable both for active researchers and for advanced students in courses involving bacterial or archaeal physiology, molecular microbiology, structural cell biology, molecular motility or evolution. Chapter 3 of this book is open access under a CC BY 4.0 license.
New Models of the Cell Nucleus: Crowding, Entropic Forces, Phase Separation, and Fractals
Author: Ronald Hancock
Publisher: Academic Press
ISBN: 0128002522
Category : Science
Languages : en
Pages : 511
Book Description
International Review of Cell and Molecular Biology presents current advances and comprehensive reviews in cell biology--both plant and animal. Articles address structure and control of gene expression, nucleocytoplasmic interactions, control of cell development and differentiation, and cell transformation and growth. Impact factor for 2012: 4.973. Ideas from the fields of biophysics, physical chemistry, of polymer and colloid, and soft matter science have helped clarify the structure and functions of the cell nucleus. The development of powerful methods for modeling conformations and interactions of macromolecules has also contributed. The book aims to encourage cell and molecular biologists to become more familiar with and understand these new concepts and methods, and the crucial contributions they are making to our perception of the nucleus. This is the first volume to present a comprehensive review of New Models of the Cell Nucleus
Publisher: Academic Press
ISBN: 0128002522
Category : Science
Languages : en
Pages : 511
Book Description
International Review of Cell and Molecular Biology presents current advances and comprehensive reviews in cell biology--both plant and animal. Articles address structure and control of gene expression, nucleocytoplasmic interactions, control of cell development and differentiation, and cell transformation and growth. Impact factor for 2012: 4.973. Ideas from the fields of biophysics, physical chemistry, of polymer and colloid, and soft matter science have helped clarify the structure and functions of the cell nucleus. The development of powerful methods for modeling conformations and interactions of macromolecules has also contributed. The book aims to encourage cell and molecular biologists to become more familiar with and understand these new concepts and methods, and the crucial contributions they are making to our perception of the nucleus. This is the first volume to present a comprehensive review of New Models of the Cell Nucleus
Systems Biology of Bacteria
Author:
Publisher: Academic Press
ISBN: 9780080993874
Category : Computers
Languages : en
Pages : 0
Book Description
Focusing on the systems biology of bacteria and microorganisms, the 39th volume of Methods in Microbiology investigates the interface between molecular biology, bioinformatics, and modelling and predicting behavior. This cutting-edge research area is of extreme importance to the field and is developing quickly.
Publisher: Academic Press
ISBN: 9780080993874
Category : Computers
Languages : en
Pages : 0
Book Description
Focusing on the systems biology of bacteria and microorganisms, the 39th volume of Methods in Microbiology investigates the interface between molecular biology, bioinformatics, and modelling and predicting behavior. This cutting-edge research area is of extreme importance to the field and is developing quickly.
DNA Methyltransferases - Role and Function
Author: Albert Jeltsch
Publisher: Springer
ISBN: 3319436244
Category : Science
Languages : en
Pages : 537
Book Description
DNA methyltransferases are important enzymes in a broad range of organisms. Dysfunction of DNA methyltransferases in humans leads to many severe diseases, including cancer. This book focuses on the biochemical properties of these enzymes, describing their structures and mechanisms in bacteria, humans and other species, including plants, and also explains the biological processes of reading of DNA methylation and DNA demethylation. It covers many emerging aspects of the biological roles of DNA methylation functioning as an essential epigenetic mark and describes the role of DNA methylation in diseases. Moreover, the book explains modern technologies, like targeted rewriting of DNA methylation by designed DNA methyltransferases, as well as technological applications of DNA methyltransferases in DNA labelling. Finally, the book summarizes recent methods for the analysis of DNA methylation in human DNA. Overall, this book represents a comprehensive state-of-the-art- work and is a must-have for advanced researchers in the field of DNA methylation and epigenetics.
Publisher: Springer
ISBN: 3319436244
Category : Science
Languages : en
Pages : 537
Book Description
DNA methyltransferases are important enzymes in a broad range of organisms. Dysfunction of DNA methyltransferases in humans leads to many severe diseases, including cancer. This book focuses on the biochemical properties of these enzymes, describing their structures and mechanisms in bacteria, humans and other species, including plants, and also explains the biological processes of reading of DNA methylation and DNA demethylation. It covers many emerging aspects of the biological roles of DNA methylation functioning as an essential epigenetic mark and describes the role of DNA methylation in diseases. Moreover, the book explains modern technologies, like targeted rewriting of DNA methylation by designed DNA methyltransferases, as well as technological applications of DNA methyltransferases in DNA labelling. Finally, the book summarizes recent methods for the analysis of DNA methylation in human DNA. Overall, this book represents a comprehensive state-of-the-art- work and is a must-have for advanced researchers in the field of DNA methylation and epigenetics.
Genome Mapping and Genomics in Animal-Associated Microbes
Author: Vishvanath Nene
Publisher: Springer Science & Business Media
ISBN: 3540740422
Category : Science
Languages : en
Pages : 253
Book Description
Achievements and progress in genome mapping and the genomics of microbes supersede by far those for higher plants and animals, in part due to their enormous economic implication but also smaller genome size. In the post-genomic era, whole genome sequences of animal-associated microbes are providing clues to depicting the genetic basis of the complex host-pathogen relationships and the evolution of parasitism; and to improving methods of controlling pathogens. This volume focuses on a globally important group of intracellular prokaryotic pathogens which affect livestock animals. These include Brucella, Mycobacterium, Anaplasma and Ehrlichia, as well as the protozoan pathogens Cryptosporidium and Theileria, for which genome sequence data is available. Insights from comparative genomics of the microbes described provide clues to the adaptation involved in host-microbe interactions, as well as resources potentially useful for application in future research and product development.
Publisher: Springer Science & Business Media
ISBN: 3540740422
Category : Science
Languages : en
Pages : 253
Book Description
Achievements and progress in genome mapping and the genomics of microbes supersede by far those for higher plants and animals, in part due to their enormous economic implication but also smaller genome size. In the post-genomic era, whole genome sequences of animal-associated microbes are providing clues to depicting the genetic basis of the complex host-pathogen relationships and the evolution of parasitism; and to improving methods of controlling pathogens. This volume focuses on a globally important group of intracellular prokaryotic pathogens which affect livestock animals. These include Brucella, Mycobacterium, Anaplasma and Ehrlichia, as well as the protozoan pathogens Cryptosporidium and Theileria, for which genome sequence data is available. Insights from comparative genomics of the microbes described provide clues to the adaptation involved in host-microbe interactions, as well as resources potentially useful for application in future research and product development.
Bacterial Physiology
Author: Walid El-Sharoud
Publisher: Springer Science & Business Media
ISBN: 3540749217
Category : Science
Languages : en
Pages : 377
Book Description
The application of new molecular methodologies in the study of bacterial behavior and cell architecture has enabled new revolutionary insights and discoveries in these areas. This new text presents recent developments in bacterial physiology that are highly relevant to a wide range of readership including those interested in basic and applied knowledge. Its chapters are written by international scientific authorities at the forefront of the subject. The value of this recent knowledge in bacterial physiology is not only restricted to fundamental biology. It also extends to biotechnology and drug-discovery disciplines.
Publisher: Springer Science & Business Media
ISBN: 3540749217
Category : Science
Languages : en
Pages : 377
Book Description
The application of new molecular methodologies in the study of bacterial behavior and cell architecture has enabled new revolutionary insights and discoveries in these areas. This new text presents recent developments in bacterial physiology that are highly relevant to a wide range of readership including those interested in basic and applied knowledge. Its chapters are written by international scientific authorities at the forefront of the subject. The value of this recent knowledge in bacterial physiology is not only restricted to fundamental biology. It also extends to biotechnology and drug-discovery disciplines.