Analysis, Design Optimization, and Controller Design of a DC-to-DC Parallel Resonant Converter

Analysis, Design Optimization, and Controller Design of a DC-to-DC Parallel Resonant Converter PDF Author: Vipin Madhani
Publisher:
ISBN:
Category : Electric current converters
Languages : en
Pages : 844

Get Book Here

Book Description

Analysis, Design Optimization, and Controller Design of a DC-to-DC Parallel Resonant Converter

Analysis, Design Optimization, and Controller Design of a DC-to-DC Parallel Resonant Converter PDF Author: Vipin Madhani
Publisher:
ISBN:
Category : Electric current converters
Languages : en
Pages : 844

Get Book Here

Book Description


Analysis and Design Optimization of Resonant DC-DC Converters

Analysis and Design Optimization of Resonant DC-DC Converters PDF Author: Xiang Fang
Publisher:
ISBN:
Category :
Languages : en
Pages : 190

Get Book Here

Book Description
The development in power conversion technology is in constant demand of high power efficiency and high power density. The DC-DC power conversion is an indispensable stage for numerous power supplies and energy related applications. Particularly, in PV micro-inverters and front-end converter of power supplies, great challenges are imposed on the power performances of the DC-DC converter stage, which not only require high efficiency and density but also the capability to regulate a wide variation range of input voltage and load conditions. The resonant DC-DC converters are good candidates to meet these challenges with the advantages of achieving soft switching and low EMI. Among various resonant converter topologies, the LLC converter is very attractive for its wide gain range and providing ZVS for switches from full load to zero load condition. The operation of the LLC converter is complicated due to its multiple resonant stage mechanism. A literature review of different analysis methods are presented, and it shows that the study on the LLC is still incomplete. Therefore, an operation mode analysis method is proposed, which divides the operation into six major modes based on the occurrence of resonant stages. The resonant currents, voltages and the DC gain characteristics for each mode is investigated. To obtain a thorough view of the converter behavior, the boundaries of every mode are studied, and mode distribution regarding the gain, load and frequency is presented and discussed. As this operation mode model is a precise model, an experimental prototype is designed and built to demonstrate its accuracy in operation waveforms and gain prediction. Since most of the LLC modes have no closed-form solutions, simplification is necessary in order to utilize this mode model in practical design. Some prior approximation methods for converter's gain characteristics are discussed. Instead of getting an entire gain-vs.-frequency curve, we focus on peak gains, which is an important design parameters indicating the LLC's operating limit of input voltage and switching frequency. A numerical peak gain approximation method is developed, which provide a direct way to calculate the peak gain and its corresponding load and frequency condition. The approximated results are compared with experiments and simulations, and are proved to be accurate. In addition, as PO mode is the most favorable operation mode of the LLC, its operation region is investigated and an approximation approach is developed to determine its boundary. The design optimization of the LLC has always been a difficult problem as there are many parameters affecting the design and it lacks clear design guidance in selecting the optimal resonant tank parameters. Based on the operation mode model, three optimization methods are proposed according to the design scenarios. These methods focus on minimize the conduction loss of resonant tank while maintaining the required voltage gain level, and the approximations of peak gains and PO mode boundary can be applied here to facilitate the design. A design example is presented using one of the proposed optimization methods. As a comparison, the L-C component values are reselected and tested for the same design specifications. The experiments show that the optimal design has better efficiency performance. Finally, a generalized approach for resonant converter analysis is developed. It can be implemented by computer programs or numerical analysis tools to derive the operation waveforms and DC characteristics of resonant converters.

Masters Theses in the Pure and Applied Sciences

Masters Theses in the Pure and Applied Sciences PDF Author: Wade H. Shafer
Publisher: Springer Science & Business Media
ISBN: 1461528321
Category : Science
Languages : en
Pages : 350

Get Book Here

Book Description
Masters Theses in the Pure and Applied Sciences was first conceived, published, and disseminated by the Center for Information and Numerical Data Analysis and Synthesis (CINDAS) * at Purdue University in 1 957, starting its coverage of theses with the academic year 1955. Beginning with Volume 13, the printing and dissemination phases of the activity were transferred to University Microfilms/Xerox of Ann Arbor, Michigan, with the thought that such an arrangement would be more beneficial to the academic and general scientific and technical community. After five years of this joint undertaking we had concluded that it was in the interest of all con cerned if the printing and distribution of the volumes were handled by an interna tional publishing house to assure improved service and broader dissemination. Hence, starting with Volume 18, Masters Theses in the Pure and Applied Sciences has been disseminated on a worldwide basis by Plenum Publishing Cor poration of New York, and in the same year the coverage was broadened to include Canadian universities. All back issues can also be ordered from Plenum. We have reported in Volume 36 (thesis year 1991) a total of 11,024 thesis titles from 23 Canadian and 161 United States universities. We are sure that this broader base for these titles reported will greatly enhance the value of this important annual reference work. While Volume 36 reports theses submitted in 1991, on occasion, certain univer sities do report theses submitted in previous years but not reported at the time.

Resonant Power Converters

Resonant Power Converters PDF Author: Marian K. Kazimierczuk
Publisher: John Wiley & Sons
ISBN: 1118585860
Category : Religion
Languages : en
Pages : 632

Get Book Here

Book Description
This book is devoted to resonant energy conversion in power electronics. It is a practical, systematic guide to the analysis and design of various dc-dc resonant inverters, high-frequency rectifiers, and dc-dc resonant converters that are building blocks of many of today's high-frequency energy processors. Designed to function as both a superior senior-to-graduate level textbook for electrical engineering courses and a valuable professional reference for practicing engineers, it provides students and engineers with a solid grasp of existing high-frequency technology, while acquainting them with a number of easy-to-use tools for the analysis and design of resonant power circuits. Resonant power conversion technology is now a very hot area and in the center of the renewable energy and energy harvesting technologies.

Modeling, Analysis and Design of Fixed Frequency Series-parallel Resonant DC/DC Converters Using the Extended Describing Function Method

Modeling, Analysis and Design of Fixed Frequency Series-parallel Resonant DC/DC Converters Using the Extended Describing Function Method PDF Author: Ji Xie
Publisher:
ISBN:
Category : DC-to-DC converters
Languages : en
Pages : 0

Get Book Here

Book Description


Resonant DC/DC Converters

Resonant DC/DC Converters PDF Author: Yung-Lin Lin
Publisher:
ISBN:
Category : DC-to-DC converters
Languages : en
Pages : 252

Get Book Here

Book Description


Analysis, Optimization and Control of Grid-Interfaced Matrix-Based Isolated AC-DC Converters

Analysis, Optimization and Control of Grid-Interfaced Matrix-Based Isolated AC-DC Converters PDF Author: Jaydeep Saha
Publisher: Springer Nature
ISBN: 9811949026
Category : Technology & Engineering
Languages : en
Pages : 295

Get Book Here

Book Description
This book presents novel contributions in the development of solid-state-transformer (SST) technology both for medium-voltage (MV) and low-voltage (LV) utility grid interfaces, which can potentially augment the grid modernization process in the evolving power system paradigm. For the MV interface, a single-stage AC-DC SST submodule topology has been proposed, and its modulation and soft-switching possibilities are analysed, experimentally validated and adequately benchmarked. A control scheme with power balance capability among submodules is developed for MV grid-connected single-stage AC-DC SST for smooth operation under inevitable parameter drift scenario, and experimental validation shows excellent performance under drastic load change conditions. A novel machine learning-aided multi-objective design optimization framework for grid-connected SST is developed and experimentally validated, which equips a power electronics design engineer with meagre computational resources to find out the most optimal SST design in a convenient time-frame. This book has also contributed towards the development of dual-active-bridge (DAB)-type and non-DAB-type LV grid-interfaced isolated AC-DC converters by providing solutions to specific topology and modulation-related shortcomings in these two types of topologies. A comprehensive comparison of the DAB and non-DAB-type LVAC-LVDC converters reveals the superiority of DAB-type conversion strategy.

Masters Theses in the Pure and Applied Sciences

Masters Theses in the Pure and Applied Sciences PDF Author: W. H. Shafer
Publisher: Springer Science & Business Media
ISBN: 9780306444951
Category : Education
Languages : en
Pages : 368

Get Book Here

Book Description
Volume 36 reports (for thesis year 1991) a total of 11,024 thesis titles from 23 Canadian and 161 US universities. The organization of the volume, as in past years, consists of thesis titles arranged by discipline, and by university within each discipline. The titles are contributed by any and all a

Analysis and Design of a Three-phase Series-parallel Resonant Converter

Analysis and Design of a Three-phase Series-parallel Resonant Converter PDF Author: (Raymond) Lu Zheng
Publisher:
ISBN:
Category : Electric current converters
Languages : en
Pages : 284

Get Book Here

Book Description


Design, Analysis, and Modelling of Modular Medium-voltage DC/DC Converter Based Systems

Design, Analysis, and Modelling of Modular Medium-voltage DC/DC Converter Based Systems PDF Author: Ahmed Adel Aboushady
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
This thesis investigates the design and analysis of modular medium-voltage dc/dc converter based systems. An emerging converter application is feeding offshore oil and gas production systems located in deep waters, on the sea bed, distant from the onshore terminal. The phase-controlled series-parallel resonant converter (SPRC) is selected as the dc/dc converter unit, for a 10kV dc transmission system. The converter has a high efficiency in addition to favourable soft switching characteristics offered by resonant converters which enable high frequency operation, hence designs with reduced footprints. The phase-controlled SPRC is studied in the steady-state and a new analysis is presented for the converter operational modes, voltage gain sensitivity, and analytically derived operational efficiency. The maximum efficiency criterion is used as the basis for selection of converter full load operational conditions. The detailed design of the output LC filter involves new mathematical expressions for interleaved multi-module operation. A novel large signal dynamic model is proposed for the phase-controlled SPRC with state feedback linearization. The model preserves converter large signal characteristics while providing a tool for faster simulation and simplified closed loop design and stability analysis. Using this model, a Kalman filter based estimator is proposed and applied for sensorless multi-loop output voltage control. The objective is to enhance the single-loop PI control dynamic response and closed loop stability with no additional sensors required for the inner loop state variables. Dynamic performance and robustness of the converter to operational circuit parameter variations are achieved with three new robust controllers; namely, Lyapunov, sliding mode, and predictive controllers. Finally, converter multi-module operation is studied, catering for voltage and current sharing of the subsea load-side step-down converter. To achieve a step-down voltage, the phase-controlled SPRC modules are connected in an input-series connection to share the medium level transmission voltage. Output-series and output-parallel connections are used to reach higher power levels. A new sensorless load voltage estimator is developed for converters remotely controlled. Matlab/Simulink simulations and experimental prototype results are used to substantiate all the proposed analysis techniques and control algorithms.