Author: Joseph R. Shoenfield
Publisher: CRC Press
ISBN: 135143330X
Category : Mathematics
Languages : en
Pages : 351
Book Description
This classic introduction to the main areas of mathematical logic provides the basis for a first graduate course in the subject. It embodies the viewpoint that mathematical logic is not a collection of vaguely related results, but a coherent method of attacking some of the most interesting problems, which face the mathematician. The author presents the basic concepts in an unusually clear and accessible fashion, concentrating on what he views as the central topics of mathematical logic: proof theory, model theory, recursion theory, axiomatic number theory, and set theory. There are many exercises, and they provide the outline of what amounts to a second book that goes into all topics in more depth. This book has played a role in the education of many mature and accomplished researchers.
Mathematical Logic
Author: Joseph R. Shoenfield
Publisher: CRC Press
ISBN: 135143330X
Category : Mathematics
Languages : en
Pages : 351
Book Description
This classic introduction to the main areas of mathematical logic provides the basis for a first graduate course in the subject. It embodies the viewpoint that mathematical logic is not a collection of vaguely related results, but a coherent method of attacking some of the most interesting problems, which face the mathematician. The author presents the basic concepts in an unusually clear and accessible fashion, concentrating on what he views as the central topics of mathematical logic: proof theory, model theory, recursion theory, axiomatic number theory, and set theory. There are many exercises, and they provide the outline of what amounts to a second book that goes into all topics in more depth. This book has played a role in the education of many mature and accomplished researchers.
Publisher: CRC Press
ISBN: 135143330X
Category : Mathematics
Languages : en
Pages : 351
Book Description
This classic introduction to the main areas of mathematical logic provides the basis for a first graduate course in the subject. It embodies the viewpoint that mathematical logic is not a collection of vaguely related results, but a coherent method of attacking some of the most interesting problems, which face the mathematician. The author presents the basic concepts in an unusually clear and accessible fashion, concentrating on what he views as the central topics of mathematical logic: proof theory, model theory, recursion theory, axiomatic number theory, and set theory. There are many exercises, and they provide the outline of what amounts to a second book that goes into all topics in more depth. This book has played a role in the education of many mature and accomplished researchers.
A Concise Introduction to Mathematical Logic
Author: Wolfgang Rautenberg
Publisher: Springer Science & Business Media
ISBN: 0387342419
Category : Mathematics
Languages : en
Pages : 273
Book Description
While there are already several well known textbooks on mathematical logic this book is unique in treating the material in a concise and streamlined fashion. This allows many important topics to be covered in a one semester course. Although the book is intended for use as a graduate text the first three chapters can be understood by undergraduates interested in mathematical logic. The remaining chapters contain material on logic programming for computer scientists, model theory, recursion theory, Godel’s Incompleteness Theorems, and applications of mathematical logic. Philosophical and foundational problems of mathematics are discussed throughout the text.
Publisher: Springer Science & Business Media
ISBN: 0387342419
Category : Mathematics
Languages : en
Pages : 273
Book Description
While there are already several well known textbooks on mathematical logic this book is unique in treating the material in a concise and streamlined fashion. This allows many important topics to be covered in a one semester course. Although the book is intended for use as a graduate text the first three chapters can be understood by undergraduates interested in mathematical logic. The remaining chapters contain material on logic programming for computer scientists, model theory, recursion theory, Godel’s Incompleteness Theorems, and applications of mathematical logic. Philosophical and foundational problems of mathematics are discussed throughout the text.
A Friendly Introduction to Mathematical Logic
Author: Christopher C. Leary
Publisher: Lulu.com
ISBN: 1942341075
Category : Computers
Languages : en
Pages : 382
Book Description
At the intersection of mathematics, computer science, and philosophy, mathematical logic examines the power and limitations of formal mathematical thinking. In this expansion of Leary's user-friendly 1st edition, readers with no previous study in the field are introduced to the basics of model theory, proof theory, and computability theory. The text is designed to be used either in an upper division undergraduate classroom, or for self study. Updating the 1st Edition's treatment of languages, structures, and deductions, leading to rigorous proofs of Gödel's First and Second Incompleteness Theorems, the expanded 2nd Edition includes a new introduction to incompleteness through computability as well as solutions to selected exercises.
Publisher: Lulu.com
ISBN: 1942341075
Category : Computers
Languages : en
Pages : 382
Book Description
At the intersection of mathematics, computer science, and philosophy, mathematical logic examines the power and limitations of formal mathematical thinking. In this expansion of Leary's user-friendly 1st edition, readers with no previous study in the field are introduced to the basics of model theory, proof theory, and computability theory. The text is designed to be used either in an upper division undergraduate classroom, or for self study. Updating the 1st Edition's treatment of languages, structures, and deductions, leading to rigorous proofs of Gödel's First and Second Incompleteness Theorems, the expanded 2nd Edition includes a new introduction to incompleteness through computability as well as solutions to selected exercises.
Mathematical Logic in the 20th Century
Author: Gerald E. Sacks
Publisher: World Scientific
ISBN: 9789812564894
Category : Mathematics
Languages : en
Pages : 712
Book Description
This invaluable book is a collection of 31 important both inideas and results papers published by mathematical logicians inthe 20th Century. The papers have been selected by Professor Gerald ESacks. Some of the authors are Gdel, Kleene, Tarski, A Robinson, Kreisel, Cohen, Morley, Shelah, Hrushovski and Woodin.
Publisher: World Scientific
ISBN: 9789812564894
Category : Mathematics
Languages : en
Pages : 712
Book Description
This invaluable book is a collection of 31 important both inideas and results papers published by mathematical logicians inthe 20th Century. The papers have been selected by Professor Gerald ESacks. Some of the authors are Gdel, Kleene, Tarski, A Robinson, Kreisel, Cohen, Morley, Shelah, Hrushovski and Woodin.
Schaum's Outline of Logic, Second Edition
Author: John Nolt
Publisher: McGraw-Hill Education
ISBN: 9780071755467
Category : Study Aids
Languages : en
Pages : 336
Book Description
The ideal review for your logic course More than 40 million students have trusted Schaum’s Outlines for their expert knowledge and helpful solved problems. Written by renowned experts in their respective fields, Schaum’s Outlines cover everything from math to science, nursing to language. The main feature for all these books is the solved problems. Step-by-step, authors walk readers through coming up with solutions to exercises in their topic of choice. 500 solved problems Includes non-classical logics Covers the probability calculus Complements or supplements the major Logic textbooks Appropriate for the following courses: Introduction to Formal Logic, Informal Logic, Logic Programming, Algebra Complete course content in easy-to-follow outline form Hundreds of solved problems for effective test preparation
Publisher: McGraw-Hill Education
ISBN: 9780071755467
Category : Study Aids
Languages : en
Pages : 336
Book Description
The ideal review for your logic course More than 40 million students have trusted Schaum’s Outlines for their expert knowledge and helpful solved problems. Written by renowned experts in their respective fields, Schaum’s Outlines cover everything from math to science, nursing to language. The main feature for all these books is the solved problems. Step-by-step, authors walk readers through coming up with solutions to exercises in their topic of choice. 500 solved problems Includes non-classical logics Covers the probability calculus Complements or supplements the major Logic textbooks Appropriate for the following courses: Introduction to Formal Logic, Informal Logic, Logic Programming, Algebra Complete course content in easy-to-follow outline form Hundreds of solved problems for effective test preparation
A Course in Mathematical Logic for Mathematicians
Author: Yu. I. Manin
Publisher: Springer Science & Business Media
ISBN: 1441906150
Category : Mathematics
Languages : en
Pages : 389
Book Description
1. The ?rst edition of this book was published in 1977. The text has been well received and is still used, although it has been out of print for some time. In the intervening three decades, a lot of interesting things have happened to mathematical logic: (i) Model theory has shown that insights acquired in the study of formal languages could be used fruitfully in solving old problems of conventional mathematics. (ii) Mathematics has been and is moving with growing acceleration from the set-theoretic language of structures to the language and intuition of (higher) categories, leaving behind old concerns about in?nities: a new view of foundations is now emerging. (iii) Computer science, a no-nonsense child of the abstract computability theory, has been creatively dealing with old challenges and providing new ones, such as the P/NP problem. Planning additional chapters for this second edition, I have decided to focus onmodeltheory,the conspicuousabsenceofwhichinthe ?rsteditionwasnoted in several reviews, and the theory of computation, including its categorical and quantum aspects. The whole Part IV: Model Theory, is new. I am very grateful to Boris I. Zilber, who kindly agreed to write it. It may be read directly after Chapter II. The contents of the ?rst edition are basically reproduced here as Chapters I–VIII. Section IV.7, on the cardinality of the continuum, is completed by Section IV.7.3, discussing H. Woodin’s discovery.
Publisher: Springer Science & Business Media
ISBN: 1441906150
Category : Mathematics
Languages : en
Pages : 389
Book Description
1. The ?rst edition of this book was published in 1977. The text has been well received and is still used, although it has been out of print for some time. In the intervening three decades, a lot of interesting things have happened to mathematical logic: (i) Model theory has shown that insights acquired in the study of formal languages could be used fruitfully in solving old problems of conventional mathematics. (ii) Mathematics has been and is moving with growing acceleration from the set-theoretic language of structures to the language and intuition of (higher) categories, leaving behind old concerns about in?nities: a new view of foundations is now emerging. (iii) Computer science, a no-nonsense child of the abstract computability theory, has been creatively dealing with old challenges and providing new ones, such as the P/NP problem. Planning additional chapters for this second edition, I have decided to focus onmodeltheory,the conspicuousabsenceofwhichinthe ?rsteditionwasnoted in several reviews, and the theory of computation, including its categorical and quantum aspects. The whole Part IV: Model Theory, is new. I am very grateful to Boris I. Zilber, who kindly agreed to write it. It may be read directly after Chapter II. The contents of the ?rst edition are basically reproduced here as Chapters I–VIII. Section IV.7, on the cardinality of the continuum, is completed by Section IV.7.3, discussing H. Woodin’s discovery.
Principia Mathematica
Author: Alfred North Whitehead
Publisher:
ISBN:
Category : Logic, Symbolic and mathematical
Languages : en
Pages : 696
Book Description
Publisher:
ISBN:
Category : Logic, Symbolic and mathematical
Languages : en
Pages : 696
Book Description
Schaum's Outline of Logic
Author: John Nolt
Publisher: McGraw Hill Professional
ISBN: 007136868X
Category : Philosophy
Languages : en
Pages : 332
Book Description
The explosive progress of logic, since Frege, has produced applications in linguistics, mathematics and computer science. Students and practitioners of any of these fields, and of philosophy, will find this book an excellent reference or introduction. Now expanded to include non-classical logic, logic for the computer, and more. The central concepts are explained as they come into play in informal writing and conversation--argument, validity, relevance, and so on. This study guide progresses to concepts such as probability calculus.
Publisher: McGraw Hill Professional
ISBN: 007136868X
Category : Philosophy
Languages : en
Pages : 332
Book Description
The explosive progress of logic, since Frege, has produced applications in linguistics, mathematics and computer science. Students and practitioners of any of these fields, and of philosophy, will find this book an excellent reference or introduction. Now expanded to include non-classical logic, logic for the computer, and more. The central concepts are explained as they come into play in informal writing and conversation--argument, validity, relevance, and so on. This study guide progresses to concepts such as probability calculus.
Classical Mathematical Logic
Author: Richard L. Epstein
Publisher: Princeton University Press
ISBN: 1400841550
Category : Mathematics
Languages : en
Pages : 545
Book Description
In Classical Mathematical Logic, Richard L. Epstein relates the systems of mathematical logic to their original motivations to formalize reasoning in mathematics. The book also shows how mathematical logic can be used to formalize particular systems of mathematics. It sets out the formalization not only of arithmetic, but also of group theory, field theory, and linear orderings. These lead to the formalization of the real numbers and Euclidean plane geometry. The scope and limitations of modern logic are made clear in these formalizations. The book provides detailed explanations of all proofs and the insights behind the proofs, as well as detailed and nontrivial examples and problems. The book has more than 550 exercises. It can be used in advanced undergraduate or graduate courses and for self-study and reference. Classical Mathematical Logic presents a unified treatment of material that until now has been available only by consulting many different books and research articles, written with various notation systems and axiomatizations.
Publisher: Princeton University Press
ISBN: 1400841550
Category : Mathematics
Languages : en
Pages : 545
Book Description
In Classical Mathematical Logic, Richard L. Epstein relates the systems of mathematical logic to their original motivations to formalize reasoning in mathematics. The book also shows how mathematical logic can be used to formalize particular systems of mathematics. It sets out the formalization not only of arithmetic, but also of group theory, field theory, and linear orderings. These lead to the formalization of the real numbers and Euclidean plane geometry. The scope and limitations of modern logic are made clear in these formalizations. The book provides detailed explanations of all proofs and the insights behind the proofs, as well as detailed and nontrivial examples and problems. The book has more than 550 exercises. It can be used in advanced undergraduate or graduate courses and for self-study and reference. Classical Mathematical Logic presents a unified treatment of material that until now has been available only by consulting many different books and research articles, written with various notation systems and axiomatizations.
Logic for Mathematicians
Author: J. Barkley Rosser
Publisher: Courier Dover Publications
ISBN: 0486468984
Category : Mathematics
Languages : en
Pages : 587
Book Description
Examination of essential topics and theorems assumes no background in logic. "Undoubtedly a major addition to the literature of mathematical logic." — Bulletin of the American Mathematical Society. 1978 edition.
Publisher: Courier Dover Publications
ISBN: 0486468984
Category : Mathematics
Languages : en
Pages : 587
Book Description
Examination of essential topics and theorems assumes no background in logic. "Undoubtedly a major addition to the literature of mathematical logic." — Bulletin of the American Mathematical Society. 1978 edition.