Author: Yuri A. Abramovich
Publisher: American Mathematical Soc.
ISBN: 0821821466
Category : Mathematics
Languages : en
Pages : 546
Book Description
This book offers a comprehensive and reader-friendly exposition of the theory of linear operators on Banach spaces and Banach lattices using their topological and order structures and properties. Abramovich and Aliprantis give a unique presentation that includes many new and very recent developments in operator theory and also draws together results which are spread over the vast literature. For instance, invariant subspaces of positive operators and the Daugavet equation arepresented in monograph form for the first time. The authors keep the discussion self-contained and use exercises to achieve this goal. The book contains over 600 exercises to help students master the material developed in the text. The exercises are of varying degrees of difficulty and play an importantand useful role in the exposition. They help to free the proofs of the main results of some technical details but provide students with accurate and complete accounts of how such details ought to be worked out. The exercises also contain a considerable amount of additional material that includes many well-known results whose proofs are not readily available elsewhere. The companion volume, Problems in Operator Theory, also by Abramovich and Aliprantis, is available from the AMS as Volume 51 inthe Graduate Studies in Mathematics series, and it contains complete solutions to all exercises in An Invitation to Operator Theory. The solutions demonstrate explicitly technical details in the proofs of many results in operator theory, providing the reader with rigorous and complete accounts ofsuch details. Finally, the book offers a considerable amount of additional material and further developments. By adding extra material to many exercises, the authors have managed to keep the presentation as self-contained as possible. The best way of learning mathematics is by doing mathematics, and the book Problems in Operator Theory will help achieve this goal. Prerequisites to each book are the standard introductory graduate courses in real analysis, general topology, measure theory, andfunctional analysis. An Invitation to Operator Theory is suitable for graduate or advanced courses in operator theory, real analysis, integration theory, measure theory, function theory, and functional analysis. Problems in Operator Theory is a very useful supplementary text in the above areas. Bothbooks will be of great interest to researchers and students in mathematics, as well as in physics, economics, finance, engineering, and other related areas, and will make an indispensable reference tool.
An Invitation to Operator Theory
Author: Yuri A. Abramovich
Publisher: American Mathematical Soc.
ISBN: 0821821466
Category : Mathematics
Languages : en
Pages : 546
Book Description
This book offers a comprehensive and reader-friendly exposition of the theory of linear operators on Banach spaces and Banach lattices using their topological and order structures and properties. Abramovich and Aliprantis give a unique presentation that includes many new and very recent developments in operator theory and also draws together results which are spread over the vast literature. For instance, invariant subspaces of positive operators and the Daugavet equation arepresented in monograph form for the first time. The authors keep the discussion self-contained and use exercises to achieve this goal. The book contains over 600 exercises to help students master the material developed in the text. The exercises are of varying degrees of difficulty and play an importantand useful role in the exposition. They help to free the proofs of the main results of some technical details but provide students with accurate and complete accounts of how such details ought to be worked out. The exercises also contain a considerable amount of additional material that includes many well-known results whose proofs are not readily available elsewhere. The companion volume, Problems in Operator Theory, also by Abramovich and Aliprantis, is available from the AMS as Volume 51 inthe Graduate Studies in Mathematics series, and it contains complete solutions to all exercises in An Invitation to Operator Theory. The solutions demonstrate explicitly technical details in the proofs of many results in operator theory, providing the reader with rigorous and complete accounts ofsuch details. Finally, the book offers a considerable amount of additional material and further developments. By adding extra material to many exercises, the authors have managed to keep the presentation as self-contained as possible. The best way of learning mathematics is by doing mathematics, and the book Problems in Operator Theory will help achieve this goal. Prerequisites to each book are the standard introductory graduate courses in real analysis, general topology, measure theory, andfunctional analysis. An Invitation to Operator Theory is suitable for graduate or advanced courses in operator theory, real analysis, integration theory, measure theory, function theory, and functional analysis. Problems in Operator Theory is a very useful supplementary text in the above areas. Bothbooks will be of great interest to researchers and students in mathematics, as well as in physics, economics, finance, engineering, and other related areas, and will make an indispensable reference tool.
Publisher: American Mathematical Soc.
ISBN: 0821821466
Category : Mathematics
Languages : en
Pages : 546
Book Description
This book offers a comprehensive and reader-friendly exposition of the theory of linear operators on Banach spaces and Banach lattices using their topological and order structures and properties. Abramovich and Aliprantis give a unique presentation that includes many new and very recent developments in operator theory and also draws together results which are spread over the vast literature. For instance, invariant subspaces of positive operators and the Daugavet equation arepresented in monograph form for the first time. The authors keep the discussion self-contained and use exercises to achieve this goal. The book contains over 600 exercises to help students master the material developed in the text. The exercises are of varying degrees of difficulty and play an importantand useful role in the exposition. They help to free the proofs of the main results of some technical details but provide students with accurate and complete accounts of how such details ought to be worked out. The exercises also contain a considerable amount of additional material that includes many well-known results whose proofs are not readily available elsewhere. The companion volume, Problems in Operator Theory, also by Abramovich and Aliprantis, is available from the AMS as Volume 51 inthe Graduate Studies in Mathematics series, and it contains complete solutions to all exercises in An Invitation to Operator Theory. The solutions demonstrate explicitly technical details in the proofs of many results in operator theory, providing the reader with rigorous and complete accounts ofsuch details. Finally, the book offers a considerable amount of additional material and further developments. By adding extra material to many exercises, the authors have managed to keep the presentation as self-contained as possible. The best way of learning mathematics is by doing mathematics, and the book Problems in Operator Theory will help achieve this goal. Prerequisites to each book are the standard introductory graduate courses in real analysis, general topology, measure theory, andfunctional analysis. An Invitation to Operator Theory is suitable for graduate or advanced courses in operator theory, real analysis, integration theory, measure theory, function theory, and functional analysis. Problems in Operator Theory is a very useful supplementary text in the above areas. Bothbooks will be of great interest to researchers and students in mathematics, as well as in physics, economics, finance, engineering, and other related areas, and will make an indispensable reference tool.
Problems in Operator Theory
Author: Yuri A. Abramovich
Publisher: American Mathematical Soc.
ISBN: 0821821474
Category : Mathematics
Languages : en
Pages : 402
Book Description
This book contains complete solutions to the more than six hundred exercises in the authors' book: Invitation to operator theory--foreword.
Publisher: American Mathematical Soc.
ISBN: 0821821474
Category : Mathematics
Languages : en
Pages : 402
Book Description
This book contains complete solutions to the more than six hundred exercises in the authors' book: Invitation to operator theory--foreword.
An Invitation to Operator Theory
Author: C. D. Aliprantis
Publisher: American Mathematical Soc.
ISBN: 9780821872291
Category :
Languages : en
Pages : 544
Book Description
This book offers a comprehensive and reader-friendly exposition of the theory of linear operators on Banach spaces and Banach lattices using their topological and order structures and properties. Abramovich and Aliprantis give a unique presentation that includes many new and very recent developments in operator theory and also draws together results which are spread over the vast literature. For instance, invariant subspaces of positive operators and the Daugavet equation arepresented in monograph form for the first time. The authors keep the discussion self-contained and use exercises to achieve this goal. The book contains over 600 exercises to help students master the material developed in the text. The exercises are of varying degrees of difficulty and play an importantand useful role in the exposition. They help to free the proofs of the main results of some technical details but provide students with accurate and complete accounts of how such details ought to be worked out. The exercises also contain a considerable amount of additional material that includes many well-known results whose proofs are not readily available elsewhere. The companion volume, Problems in Operator Theory, also by Abramovich and Aliprantis, is available from the AMS as Volume 51 inthe Graduate Studies in Mathematics series, and it contains complete solutions to all exercises in An Invitation to Operator Theory. The solutions demonstrate explicitly technical details in the proofs of many results in operator theory, providing the reader with rigorous and complete accounts ofsuch details. Finally, the book offers a considerable amount of additional material and further developments. By adding extra material to many exercises, the authors have managed to keep the presentation as self-contained as possible. The best way of learning mathematics is by doing mathematics, and the book Problems in Operator Theory will help achieve this goal. Prerequisites to each book are the standard introductory graduate courses in real analysis, general topology, measure theory, andfunctional analysis. An Invitation to Operator Theory is suitable for graduate or advanced courses in operator theory, real analysis, integration theory, measure theory, function theory, and functional analysis. Problems in Operator Theory is a very useful supplementary text in the above areas. Bothbooks will be of great interest to researchers and students in mathematics, as well as in physics, economics, finance, engineering, and other related areas, and will make an indispensable reference tool.
Publisher: American Mathematical Soc.
ISBN: 9780821872291
Category :
Languages : en
Pages : 544
Book Description
This book offers a comprehensive and reader-friendly exposition of the theory of linear operators on Banach spaces and Banach lattices using their topological and order structures and properties. Abramovich and Aliprantis give a unique presentation that includes many new and very recent developments in operator theory and also draws together results which are spread over the vast literature. For instance, invariant subspaces of positive operators and the Daugavet equation arepresented in monograph form for the first time. The authors keep the discussion self-contained and use exercises to achieve this goal. The book contains over 600 exercises to help students master the material developed in the text. The exercises are of varying degrees of difficulty and play an importantand useful role in the exposition. They help to free the proofs of the main results of some technical details but provide students with accurate and complete accounts of how such details ought to be worked out. The exercises also contain a considerable amount of additional material that includes many well-known results whose proofs are not readily available elsewhere. The companion volume, Problems in Operator Theory, also by Abramovich and Aliprantis, is available from the AMS as Volume 51 inthe Graduate Studies in Mathematics series, and it contains complete solutions to all exercises in An Invitation to Operator Theory. The solutions demonstrate explicitly technical details in the proofs of many results in operator theory, providing the reader with rigorous and complete accounts ofsuch details. Finally, the book offers a considerable amount of additional material and further developments. By adding extra material to many exercises, the authors have managed to keep the presentation as self-contained as possible. The best way of learning mathematics is by doing mathematics, and the book Problems in Operator Theory will help achieve this goal. Prerequisites to each book are the standard introductory graduate courses in real analysis, general topology, measure theory, andfunctional analysis. An Invitation to Operator Theory is suitable for graduate or advanced courses in operator theory, real analysis, integration theory, measure theory, function theory, and functional analysis. Problems in Operator Theory is a very useful supplementary text in the above areas. Bothbooks will be of great interest to researchers and students in mathematics, as well as in physics, economics, finance, engineering, and other related areas, and will make an indispensable reference tool.
Problems in Operator Theory
Author: Yuri A. Abramovich
Publisher: American Mathematical Soc.
ISBN: 9780821872307
Category : Mathematics
Languages : en
Pages : 416
Book Description
Contains problems devoted entirely to the theory of operators on Banach spaces and Banach lattices. Includes complete solutions to the more than 600 exercises in the companion volume, "An Invitation to Operator Theory" (v. 50 in the AMS series "Graduate Studies in Mathematics"), also by Abramovich and Aliprantis.
Publisher: American Mathematical Soc.
ISBN: 9780821872307
Category : Mathematics
Languages : en
Pages : 416
Book Description
Contains problems devoted entirely to the theory of operators on Banach spaces and Banach lattices. Includes complete solutions to the more than 600 exercises in the companion volume, "An Invitation to Operator Theory" (v. 50 in the AMS series "Graduate Studies in Mathematics"), also by Abramovich and Aliprantis.
Invitation to Linear Operators
Author: Takayuki Furuta
Publisher: CRC Press
ISBN: 9780415267991
Category : Mathematics
Languages : en
Pages : 276
Book Description
Most books on linear operators are not easy to follow for students and researchers without an extensive background in mathematics. Self-contained and using only matrix theory, Invitation to Linear Operators: From Matricies to Bounded Linear Operators on a Hilbert Space explains in easy-to-follow steps a variety of interesting recent results on linear operators on a Hilbert space. The author first states the important properties of a Hilbert space, then sets out the fundamental properties of bounded linear operators on a Hilbert space. The final section presents some of the more recent developments in bounded linear operators.
Publisher: CRC Press
ISBN: 9780415267991
Category : Mathematics
Languages : en
Pages : 276
Book Description
Most books on linear operators are not easy to follow for students and researchers without an extensive background in mathematics. Self-contained and using only matrix theory, Invitation to Linear Operators: From Matricies to Bounded Linear Operators on a Hilbert Space explains in easy-to-follow steps a variety of interesting recent results on linear operators on a Hilbert space. The author first states the important properties of a Hilbert space, then sets out the fundamental properties of bounded linear operators on a Hilbert space. The final section presents some of the more recent developments in bounded linear operators.
An Invitation to C*-Algebras
Author: W. Arveson
Publisher: Springer Science & Business Media
ISBN: 1461263719
Category : Mathematics
Languages : en
Pages : 117
Book Description
This book gives an introduction to C*-algebras and their representations on Hilbert spaces. We have tried to present only what we believe are the most basic ideas, as simply and concretely as we could. So whenever it is convenient (and it usually is), Hilbert spaces become separable and C*-algebras become GCR. This practice probably creates an impression that nothing of value is known about other C*-algebras. Of course that is not true. But insofar as representations are con cerned, we can point to the empirical fact that to this day no one has given a concrete parametric description of even the irreducible representations of any C*-algebra which is not GCR. Indeed, there is metamathematical evidence which strongly suggests that no one ever will (see the discussion at the end of Section 3. 4). Occasionally, when the idea behind the proof of a general theorem is exposed very clearly in a special case, we prove only the special case and relegate generalizations to the exercises. In effect, we have systematically eschewed the Bourbaki tradition. We have also tried to take into account the interests of a variety of readers. For example, the multiplicity theory for normal operators is contained in Sections 2. 1 and 2. 2. (it would be desirable but not necessary to include Section 1. 1 as well), whereas someone interested in Borel structures could read Chapter 3 separately. Chapter I could be used as a bare-bones introduction to C*-algebras. Sections 2.
Publisher: Springer Science & Business Media
ISBN: 1461263719
Category : Mathematics
Languages : en
Pages : 117
Book Description
This book gives an introduction to C*-algebras and their representations on Hilbert spaces. We have tried to present only what we believe are the most basic ideas, as simply and concretely as we could. So whenever it is convenient (and it usually is), Hilbert spaces become separable and C*-algebras become GCR. This practice probably creates an impression that nothing of value is known about other C*-algebras. Of course that is not true. But insofar as representations are con cerned, we can point to the empirical fact that to this day no one has given a concrete parametric description of even the irreducible representations of any C*-algebra which is not GCR. Indeed, there is metamathematical evidence which strongly suggests that no one ever will (see the discussion at the end of Section 3. 4). Occasionally, when the idea behind the proof of a general theorem is exposed very clearly in a special case, we prove only the special case and relegate generalizations to the exercises. In effect, we have systematically eschewed the Bourbaki tradition. We have also tried to take into account the interests of a variety of readers. For example, the multiplicity theory for normal operators is contained in Sections 2. 1 and 2. 2. (it would be desirable but not necessary to include Section 1. 1 as well), whereas someone interested in Borel structures could read Chapter 3 separately. Chapter I could be used as a bare-bones introduction to C*-algebras. Sections 2.
An Invitation to Quantum Groups and Duality
Author: Thomas Timmermann
Publisher: European Mathematical Society
ISBN: 9783037190432
Category : Mathematics
Languages : en
Pages : 436
Book Description
This book provides an introduction to the theory of quantum groups with emphasis on their duality and on the setting of operator algebras. Part I of the text presents the basic theory of Hopf algebras, Van Daele's duality theory of algebraic quantum groups, and Woronowicz's compact quantum groups, staying in a purely algebraic setting. Part II focuses on quantum groups in the setting of operator algebras. Woronowicz's compact quantum groups are treated in the setting of $C^*$-algebras, and the fundamental multiplicative unitaries of Baaj and Skandalis are studied in detail. An outline of Kustermans' and Vaes' comprehensive theory of locally compact quantum groups completes this part. Part III leads to selected topics, such as coactions, Baaj-Skandalis-duality, and approaches to quantum groupoids in the setting of operator algebras. The book is addressed to graduate students and non-experts from other fields. Only basic knowledge of (multi-) linear algebra is required for the first part, while the second and third part assume some familiarity with Hilbert spaces, $C^*$-algebras, and von Neumann algebras.
Publisher: European Mathematical Society
ISBN: 9783037190432
Category : Mathematics
Languages : en
Pages : 436
Book Description
This book provides an introduction to the theory of quantum groups with emphasis on their duality and on the setting of operator algebras. Part I of the text presents the basic theory of Hopf algebras, Van Daele's duality theory of algebraic quantum groups, and Woronowicz's compact quantum groups, staying in a purely algebraic setting. Part II focuses on quantum groups in the setting of operator algebras. Woronowicz's compact quantum groups are treated in the setting of $C^*$-algebras, and the fundamental multiplicative unitaries of Baaj and Skandalis are studied in detail. An outline of Kustermans' and Vaes' comprehensive theory of locally compact quantum groups completes this part. Part III leads to selected topics, such as coactions, Baaj-Skandalis-duality, and approaches to quantum groupoids in the setting of operator algebras. The book is addressed to graduate students and non-experts from other fields. Only basic knowledge of (multi-) linear algebra is required for the first part, while the second and third part assume some familiarity with Hilbert spaces, $C^*$-algebras, and von Neumann algebras.
K-Theory for Operator Algebras
Author: Bruce Blackadar
Publisher: Springer Science & Business Media
ISBN: 1461395720
Category : Mathematics
Languages : en
Pages : 347
Book Description
K -Theory has revolutionized the study of operator algebras in the last few years. As the primary component of the subject of "noncommutative topol ogy," K -theory has opened vast new vistas within the structure theory of C* algebras, as well as leading to profound and unexpected applications of opera tor algebras to problems in geometry and topology. As a result, many topolo gists and operator algebraists have feverishly begun trying to learn each others' subjects, and it appears certain that these two branches of mathematics have become deeply and permanently intertwined. Despite the fact that the whole subject is only about a decade old, operator K -theory has now reached a state of relative stability. While there will undoubtedly be many more revolutionary developments and applications in the future, it appears the basic theory has more or less reached a "final form." But because of the newness of the theory, there has so far been no comprehensive treatment of the subject. It is the ambitious goal of these notes to fill this gap. We will develop the K -theory of Banach algebras, the theory of extensions of C*-algebras, and the operator K -theory of Kasparov from scratch to its most advanced aspects. We will not treat applications in detail; however, we will outline the most striking of the applications to date in a section at the end, as well as mentioning others at suitable points in the text.
Publisher: Springer Science & Business Media
ISBN: 1461395720
Category : Mathematics
Languages : en
Pages : 347
Book Description
K -Theory has revolutionized the study of operator algebras in the last few years. As the primary component of the subject of "noncommutative topol ogy," K -theory has opened vast new vistas within the structure theory of C* algebras, as well as leading to profound and unexpected applications of opera tor algebras to problems in geometry and topology. As a result, many topolo gists and operator algebraists have feverishly begun trying to learn each others' subjects, and it appears certain that these two branches of mathematics have become deeply and permanently intertwined. Despite the fact that the whole subject is only about a decade old, operator K -theory has now reached a state of relative stability. While there will undoubtedly be many more revolutionary developments and applications in the future, it appears the basic theory has more or less reached a "final form." But because of the newness of the theory, there has so far been no comprehensive treatment of the subject. It is the ambitious goal of these notes to fill this gap. We will develop the K -theory of Banach algebras, the theory of extensions of C*-algebras, and the operator K -theory of Kasparov from scratch to its most advanced aspects. We will not treat applications in detail; however, we will outline the most striking of the applications to date in a section at the end, as well as mentioning others at suitable points in the text.
An Invitation to the Rogers-Ramanujan Identities
Author: Andrew V. Sills
Publisher: CRC Press
ISBN: 1351647962
Category : Mathematics
Languages : en
Pages : 263
Book Description
The Rogers--Ramanujan identities are a pair of infinite series—infinite product identities that were first discovered in 1894. Over the past several decades these identities, and identities of similar type, have found applications in number theory, combinatorics, Lie algebra and vertex operator algebra theory, physics (especially statistical mechanics), and computer science (especially algorithmic proof theory). Presented in a coherant and clear way, this will be the first book entirely devoted to the Rogers—Ramanujan identities and will include related historical material that is unavailable elsewhere.
Publisher: CRC Press
ISBN: 1351647962
Category : Mathematics
Languages : en
Pages : 263
Book Description
The Rogers--Ramanujan identities are a pair of infinite series—infinite product identities that were first discovered in 1894. Over the past several decades these identities, and identities of similar type, have found applications in number theory, combinatorics, Lie algebra and vertex operator algebra theory, physics (especially statistical mechanics), and computer science (especially algorithmic proof theory). Presented in a coherant and clear way, this will be the first book entirely devoted to the Rogers—Ramanujan identities and will include related historical material that is unavailable elsewhere.
An Invitation to Unbounded Representations of ∗-Algebras on Hilbert Space
Author: Konrad Schmüdgen
Publisher: Springer Nature
ISBN: 3030463664
Category : Mathematics
Languages : en
Pages : 388
Book Description
This textbook provides an introduction to representations of general ∗-algebras by unbounded operators on Hilbert space, a topic that naturally arises in quantum mechanics but has so far only been properly treated in advanced monographs aimed at researchers. The book covers both the general theory of unbounded representation theory on Hilbert space as well as representations of important special classes of ∗-algebra, such as the Weyl algebra and enveloping algebras associated to unitary representations of Lie groups. A broad scope of topics are treated in book form for the first time, including group graded ∗-algebras, the transition probability of states, Archimedean quadratic modules, noncommutative Positivstellensätze, induced representations, well-behaved representations and representations on rigged modules. Making advanced material accessible to graduate students, this book will appeal to students and researchers interested in advanced functional analysis and mathematical physics, and with many exercises it can be used for courses on the representation theory of Lie groups and its application to quantum physics. A rich selection of material and bibliographic notes also make it a valuable reference.
Publisher: Springer Nature
ISBN: 3030463664
Category : Mathematics
Languages : en
Pages : 388
Book Description
This textbook provides an introduction to representations of general ∗-algebras by unbounded operators on Hilbert space, a topic that naturally arises in quantum mechanics but has so far only been properly treated in advanced monographs aimed at researchers. The book covers both the general theory of unbounded representation theory on Hilbert space as well as representations of important special classes of ∗-algebra, such as the Weyl algebra and enveloping algebras associated to unitary representations of Lie groups. A broad scope of topics are treated in book form for the first time, including group graded ∗-algebras, the transition probability of states, Archimedean quadratic modules, noncommutative Positivstellensätze, induced representations, well-behaved representations and representations on rigged modules. Making advanced material accessible to graduate students, this book will appeal to students and researchers interested in advanced functional analysis and mathematical physics, and with many exercises it can be used for courses on the representation theory of Lie groups and its application to quantum physics. A rich selection of material and bibliographic notes also make it a valuable reference.