An Introduction to Statistical Analysis of Random Arrays

An Introduction to Statistical Analysis of Random Arrays PDF Author: V. L. Girko
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110916681
Category : Mathematics
Languages : en
Pages : 700

Get Book Here

Book Description
No detailed description available for "An Introduction to Statistical Analysis of Random Arrays".

An Introduction to Statistical Analysis of Random Arrays

An Introduction to Statistical Analysis of Random Arrays PDF Author: V. L. Girko
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110916681
Category : Mathematics
Languages : en
Pages : 700

Get Book Here

Book Description
No detailed description available for "An Introduction to Statistical Analysis of Random Arrays".

An Introduction to Statistical Learning

An Introduction to Statistical Learning PDF Author: Gareth James
Publisher: Springer Nature
ISBN: 3031387473
Category : Mathematics
Languages : en
Pages : 617

Get Book Here

Book Description
An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.

An Introduction to Statistical Signal Processing

An Introduction to Statistical Signal Processing PDF Author: Robert M. Gray
Publisher: Cambridge University Press
ISBN: 1139456288
Category : Technology & Engineering
Languages : en
Pages : 479

Get Book Here

Book Description
This book describes the essential tools and techniques of statistical signal processing. At every stage theoretical ideas are linked to specific applications in communications and signal processing using a range of carefully chosen examples. The book begins with a development of basic probability, random objects, expectation, and second order moment theory followed by a wide variety of examples of the most popular random process models and their basic uses and properties. Specific applications to the analysis of random signals and systems for communicating, estimating, detecting, modulating, and other processing of signals are interspersed throughout the book. Hundreds of homework problems are included and the book is ideal for graduate students of electrical engineering and applied mathematics. It is also a useful reference for researchers in signal processing and communications.

Log-Gases and Random Matrices (LMS-34)

Log-Gases and Random Matrices (LMS-34) PDF Author: Peter J. Forrester
Publisher: Princeton University Press
ISBN: 1400835410
Category : Mathematics
Languages : en
Pages : 808

Get Book Here

Book Description
Random matrix theory, both as an application and as a theory, has evolved rapidly over the past fifteen years. Log-Gases and Random Matrices gives a comprehensive account of these developments, emphasizing log-gases as a physical picture and heuristic, as well as covering topics such as beta ensembles and Jack polynomials. Peter Forrester presents an encyclopedic development of log-gases and random matrices viewed as examples of integrable or exactly solvable systems. Forrester develops not only the application and theory of Gaussian and circular ensembles of classical random matrix theory, but also of the Laguerre and Jacobi ensembles, and their beta extensions. Prominence is given to the computation of a multitude of Jacobians; determinantal point processes and orthogonal polynomials of one variable; the Selberg integral, Jack polynomials, and generalized hypergeometric functions; Painlevé transcendents; macroscopic electrostatistics and asymptotic formulas; nonintersecting paths and models in statistical mechanics; and applications of random matrix theory. This is the first textbook development of both nonsymmetric and symmetric Jack polynomial theory, as well as the connection between Selberg integral theory and beta ensembles. The author provides hundreds of guided exercises and linked topics, making Log-Gases and Random Matrices an indispensable reference work, as well as a learning resource for all students and researchers in the field.

Eigenvalue Distribution of Large Random Matrices

Eigenvalue Distribution of Large Random Matrices PDF Author: Leonid Andreevich Pastur
Publisher: American Mathematical Soc.
ISBN: 082185285X
Category : Mathematics
Languages : en
Pages : 650

Get Book Here

Book Description
Random matrix theory is a wide and growing field with a variety of concepts, results, and techniques and a vast range of applications in mathematics and the related sciences. The book, written by well-known experts, offers beginners a fairly balanced collection of basic facts and methods (Part 1 on classical ensembles) and presents experts with an exposition of recent advances in the subject (Parts 2 and 3 on invariant ensembles and ensembles with independent entries). The text includes many of the authors' results and methods on several main aspects of the theory, thus allowing them to present a unique and personal perspective on the subject and to cover many topics using a unified approach essentially based on the Stieltjes transform and orthogonal polynomials. The exposition is supplemented by numerous comments, remarks, and problems. This results in a book that presents a detailed and self-contained treatment of the basic random matrix ensembles and asymptotic regimes. This book will be an important reference for researchers in a variety of areas of mathematics and mathematical physics. Various chapters of the book can be used for graduate courses; the main prerequisite is a basic knowledge of calculus, linear algebra, and probability theory.

Classical and Modern Direction-of-Arrival Estimation

Classical and Modern Direction-of-Arrival Estimation PDF Author: T. Engin Tuncer
Publisher: Academic Press
ISBN: 0080923070
Category : Technology & Engineering
Languages : en
Pages : 451

Get Book Here

Book Description
Classical and Modern Direction of Arrival Estimation contains both theory and practice of direction finding by the leading researchers in the field. This unique blend of techniques used in commercial DF systems and state-of-the art super-resolution methods is a valuable source of information for both practicing engineers and researchers. Key topics covered are: - Classical methods of direction finding - Practical DF methods used in commercial systems - Calibration in antenna arrays - Array mapping, fast algorithms and wideband processing - Spatial time-frequency distributions for DOA estimation - DOA estimation in threshold region - Higher order statistics for DOA estimation - Localization in sensor networks and direct position estimation - Brings together in one book classical and modern DOA techniques, showing the connections between them - Contains contributions from the leading people in the field - Gives a concise and easy- to- read introduction to the classical techniques - Evaluates the strengths and weaknesses of key super-resolution techniques - Includes applications to sensor networks

Applied Multivariate Statistical Analysis (Classic Version)

Applied Multivariate Statistical Analysis (Classic Version) PDF Author: Richard A. Johnson
Publisher: Pearson
ISBN: 9780134995397
Category : Multivariate analysis
Languages : en
Pages : 808

Get Book Here

Book Description
This title is part of the Pearson Modern Classics series. Pearson Modern Classics are acclaimed titles at a value price. Please visit www.pearsonhighered.com/math-classics-series for a complete list of titles. For courses in Multivariate Statistics, Marketing Research, Intermediate Business Statistics, Statistics in Education, and graduate-level courses in Experimental Design and Statistics. Appropriate for experimental scientists in a variety of disciplines, this market-leading text offers a readable introduction to the statistical analysis of multivariate observations. Its primary goal is to impart the knowledge necessary to make proper interpretations and select appropriate techniques for analyzing multivariate data. Ideal for a junior/senior or graduate level course that explores the statistical methods for describing and analyzing multivariate data, the text assumes two or more statistics courses as a prerequisite.

Random Matrices and Non-Commutative Probability

Random Matrices and Non-Commutative Probability PDF Author: Arup Bose
Publisher: CRC Press
ISBN: 1000458822
Category : Mathematics
Languages : en
Pages : 420

Get Book Here

Book Description
This is an introductory book on Non-Commutative Probability or Free Probability and Large Dimensional Random Matrices. Basic concepts of free probability are introduced by analogy with classical probability in a lucid and quick manner. It then develops the results on the convergence of large dimensional random matrices, with a special focus on the interesting connections to free probability. The book assumes almost no prerequisite for the most part. However, familiarity with the basic convergence concepts in probability and a bit of mathematical maturity will be helpful. Combinatorial properties of non-crossing partitions, including the Möbius function play a central role in introducing free probability. Free independence is defined via free cumulants in analogy with the way classical independence can be defined via classical cumulants. Free cumulants are introduced through the Möbius function. Free product probability spaces are constructed using free cumulants. Marginal and joint tracial convergence of large dimensional random matrices such as the Wigner, elliptic, sample covariance, cross-covariance, Toeplitz, Circulant and Hankel are discussed. Convergence of the empirical spectral distribution is discussed for symmetric matrices. Asymptotic freeness results for random matrices, including some recent ones, are discussed in detail. These clarify the structure of the limits for joint convergence of random matrices. Asymptotic freeness of independent sample covariance matrices is also demonstrated via embedding into Wigner matrices. Exercises, at advanced undergraduate and graduate level, are provided in each chapter.

Theory of Stochastic Canonical Equations

Theory of Stochastic Canonical Equations PDF Author: V.L. Girko
Publisher: Springer Science & Business Media
ISBN: 9401009899
Category : Mathematics
Languages : en
Pages : 1010

Get Book Here

Book Description
Theory of Stochastic Canonical Equations collects the major results of thirty years of the author's work in the creation of the theory of stochastic canonical equations. It is the first book to completely explore this theory and to provide the necessary tools for dealing with these equations. Included are limit phenomena of sequences of random matrices and the asymptotic properties of the eigenvalues of such matrices. The book is especially interesting since it gives readers a chance to study proofs written by the mathematician who discovered them. All fifty-nine canonical equations are derived and explored along with their applications in such diverse fields as probability and statistics, economics and finance, statistical physics, quantum mechanics, control theory, cryptography, and communications networks. Some of these equations were first published in Russian in 1988 in the book Spectral Theory of Random Matrices, published by Nauka Science, Moscow. An understanding of the structure of random eigenvalues and eigenvectors is central to random matrices and their applications. Random matrix analysis uses a broad spectrum of other parts of mathematics, linear algebra, geometry, analysis, statistical physics, combinatories, and so forth. In return, random matrix theory is one of the chief tools of modern statistics, to the extent that at times the interface between matrix analysis and statistics is notably blurred. Volume I of Theory of Stochastic Canonical Equations discusses the key canonical equations in advanced random matrix analysis. Volume II turns its attention to a broad discussion of some concrete examples of matrices. It contains in-depth discussion of modern, highly-specialized topics in matrix analysis, such as unitary random matrices and Jacoby random matrices. The book is intended for a variety of readers: students, engineers, statisticians, economists and others.

Statistical Analysis of Gene Expression Microarray Data

Statistical Analysis of Gene Expression Microarray Data PDF Author: Terry Speed
Publisher: CRC Press
ISBN: 0203011236
Category : Mathematics
Languages : en
Pages : 237

Get Book Here

Book Description
Although less than a decade old, the field of microarray data analysis is now thriving and growing at a remarkable pace. Biologists, geneticists, and computer scientists as well as statisticians all need an accessible, systematic treatment of the techniques used for analyzing the vast amounts of data generated by large-scale gene expression studies