Author: Colin D MacLeod
Publisher:
ISBN: 9781909832527
Category : Technology & Engineering
Languages : en
Pages : 136
Book Description
This workbook contains five exercises which demonstrate how to integrate QGIS and R to allow you to conduct high quality spatial analyses by accessing and combining the powerful mapping, data layer creation, editing and processing tools from QGIS and the equally powerful analytical tools from R.
An Introduction To Integrating QGIS And R For Spatial Analysis
Author: Colin D MacLeod
Publisher:
ISBN: 9781909832527
Category : Technology & Engineering
Languages : en
Pages : 136
Book Description
This workbook contains five exercises which demonstrate how to integrate QGIS and R to allow you to conduct high quality spatial analyses by accessing and combining the powerful mapping, data layer creation, editing and processing tools from QGIS and the equally powerful analytical tools from R.
Publisher:
ISBN: 9781909832527
Category : Technology & Engineering
Languages : en
Pages : 136
Book Description
This workbook contains five exercises which demonstrate how to integrate QGIS and R to allow you to conduct high quality spatial analyses by accessing and combining the powerful mapping, data layer creation, editing and processing tools from QGIS and the equally powerful analytical tools from R.
Applied Spatial Data Analysis with R
Author: Roger S. Bivand
Publisher: Springer Science & Business Media
ISBN: 1461476186
Category : Medical
Languages : en
Pages : 414
Book Description
Applied Spatial Data Analysis with R, second edition, is divided into two basic parts, the first presenting R packages, functions, classes and methods for handling spatial data. This part is of interest to users who need to access and visualise spatial data. Data import and export for many file formats for spatial data are covered in detail, as is the interface between R and the open source GRASS GIS and the handling of spatio-temporal data. The second part showcases more specialised kinds of spatial data analysis, including spatial point pattern analysis, interpolation and geostatistics, areal data analysis and disease mapping. The coverage of methods of spatial data analysis ranges from standard techniques to new developments, and the examples used are largely taken from the spatial statistics literature. All the examples can be run using R contributed packages available from the CRAN website, with code and additional data sets from the book's own website. Compared to the first edition, the second edition covers the more systematic approach towards handling spatial data in R, as well as a number of important and widely used CRAN packages that have appeared since the first edition. This book will be of interest to researchers who intend to use R to handle, visualise, and analyse spatial data. It will also be of interest to spatial data analysts who do not use R, but who are interested in practical aspects of implementing software for spatial data analysis. It is a suitable companion book for introductory spatial statistics courses and for applied methods courses in a wide range of subjects using spatial data, including human and physical geography, geographical information science and geoinformatics, the environmental sciences, ecology, public health and disease control, economics, public administration and political science. The book has a website where complete code examples, data sets, and other support material may be found: http://www.asdar-book.org. The authors have taken part in writing and maintaining software for spatial data handling and analysis with R in concert since 2003.
Publisher: Springer Science & Business Media
ISBN: 1461476186
Category : Medical
Languages : en
Pages : 414
Book Description
Applied Spatial Data Analysis with R, second edition, is divided into two basic parts, the first presenting R packages, functions, classes and methods for handling spatial data. This part is of interest to users who need to access and visualise spatial data. Data import and export for many file formats for spatial data are covered in detail, as is the interface between R and the open source GRASS GIS and the handling of spatio-temporal data. The second part showcases more specialised kinds of spatial data analysis, including spatial point pattern analysis, interpolation and geostatistics, areal data analysis and disease mapping. The coverage of methods of spatial data analysis ranges from standard techniques to new developments, and the examples used are largely taken from the spatial statistics literature. All the examples can be run using R contributed packages available from the CRAN website, with code and additional data sets from the book's own website. Compared to the first edition, the second edition covers the more systematic approach towards handling spatial data in R, as well as a number of important and widely used CRAN packages that have appeared since the first edition. This book will be of interest to researchers who intend to use R to handle, visualise, and analyse spatial data. It will also be of interest to spatial data analysts who do not use R, but who are interested in practical aspects of implementing software for spatial data analysis. It is a suitable companion book for introductory spatial statistics courses and for applied methods courses in a wide range of subjects using spatial data, including human and physical geography, geographical information science and geoinformatics, the environmental sciences, ecology, public health and disease control, economics, public administration and political science. The book has a website where complete code examples, data sets, and other support material may be found: http://www.asdar-book.org. The authors have taken part in writing and maintaining software for spatial data handling and analysis with R in concert since 2003.
Hands-On Geospatial Analysis with R and QGIS
Author: Shammunul Islam
Publisher: Packt Publishing Ltd
ISBN: 1788996984
Category : Computers
Languages : en
Pages : 347
Book Description
Practical examples with real-world projects in GIS, Remote sensing, Geospatial data management and Analysis using the R programming language Key FeaturesUnderstand the basics of R and QGIS to work with GIS and remote sensing dataLearn to manage, manipulate, and analyze spatial data using R and QGISApply machine learning algorithms to geospatial data using R and QGISBook Description Managing spatial data has always been challenging and it's getting more complex as the size of data increases. Spatial data is actually big data and you need different tools and techniques to work your way around to model and create different workflows. R and QGIS have powerful features that can make this job easier. This book is your companion for applying machine learning algorithms on GIS and remote sensing data. You’ll start by gaining an understanding of the nature of spatial data and installing R and QGIS. Then, you’ll learn how to use different R packages to import, export, and visualize data, before doing the same in QGIS. Screenshots are included to ease your understanding. Moving on, you’ll learn about different aspects of managing and analyzing spatial data, before diving into advanced topics. You’ll create powerful data visualizations using ggplot2, ggmap, raster, and other packages of R. You’ll learn how to use QGIS 3.2.2 to visualize and manage (create, edit, and format) spatial data. Different types of spatial analysis are also covered using R. Finally, you’ll work with landslide data from Bangladesh to create a landslide susceptibility map using different machine learning algorithms. By reading this book, you’ll transition from being a beginner to an intermediate user of GIS and remote sensing data in no time. What you will learnInstall R and QGISGet familiar with the basics of R programming and QGISVisualize quantitative and qualitative data to create mapsFind out the basics of raster data and how to use them in R and QGISPerform geoprocessing tasks and automate them using the graphical modeler of QGISApply different machine learning algorithms on satellite data for landslide susceptibility mapping and predictionWho this book is for This book is great for geographers, environmental scientists, statisticians, and every professional who deals with spatial data. If you want to learn how to handle GIS and remote sensing data, then this book is for you. Basic knowledge of R and QGIS would be helpful but is not necessary.
Publisher: Packt Publishing Ltd
ISBN: 1788996984
Category : Computers
Languages : en
Pages : 347
Book Description
Practical examples with real-world projects in GIS, Remote sensing, Geospatial data management and Analysis using the R programming language Key FeaturesUnderstand the basics of R and QGIS to work with GIS and remote sensing dataLearn to manage, manipulate, and analyze spatial data using R and QGISApply machine learning algorithms to geospatial data using R and QGISBook Description Managing spatial data has always been challenging and it's getting more complex as the size of data increases. Spatial data is actually big data and you need different tools and techniques to work your way around to model and create different workflows. R and QGIS have powerful features that can make this job easier. This book is your companion for applying machine learning algorithms on GIS and remote sensing data. You’ll start by gaining an understanding of the nature of spatial data and installing R and QGIS. Then, you’ll learn how to use different R packages to import, export, and visualize data, before doing the same in QGIS. Screenshots are included to ease your understanding. Moving on, you’ll learn about different aspects of managing and analyzing spatial data, before diving into advanced topics. You’ll create powerful data visualizations using ggplot2, ggmap, raster, and other packages of R. You’ll learn how to use QGIS 3.2.2 to visualize and manage (create, edit, and format) spatial data. Different types of spatial analysis are also covered using R. Finally, you’ll work with landslide data from Bangladesh to create a landslide susceptibility map using different machine learning algorithms. By reading this book, you’ll transition from being a beginner to an intermediate user of GIS and remote sensing data in no time. What you will learnInstall R and QGISGet familiar with the basics of R programming and QGISVisualize quantitative and qualitative data to create mapsFind out the basics of raster data and how to use them in R and QGISPerform geoprocessing tasks and automate them using the graphical modeler of QGISApply different machine learning algorithms on satellite data for landslide susceptibility mapping and predictionWho this book is for This book is great for geographers, environmental scientists, statisticians, and every professional who deals with spatial data. If you want to learn how to handle GIS and remote sensing data, then this book is for you. Basic knowledge of R and QGIS would be helpful but is not necessary.
Geocomputation with R
Author: Robin Lovelace
Publisher: CRC Press
ISBN: 1351396900
Category : Mathematics
Languages : en
Pages : 354
Book Description
Geocomputation with R is for people who want to analyze, visualize and model geographic data with open source software. It is based on R, a statistical programming language that has powerful data processing, visualization, and geospatial capabilities. The book equips you with the knowledge and skills to tackle a wide range of issues manifested in geographic data, including those with scientific, societal, and environmental implications. This book will interest people from many backgrounds, especially Geographic Information Systems (GIS) users interested in applying their domain-specific knowledge in a powerful open source language for data science, and R users interested in extending their skills to handle spatial data. The book is divided into three parts: (I) Foundations, aimed at getting you up-to-speed with geographic data in R, (II) extensions, which covers advanced techniques, and (III) applications to real-world problems. The chapters cover progressively more advanced topics, with early chapters providing strong foundations on which the later chapters build. Part I describes the nature of spatial datasets in R and methods for manipulating them. It also covers geographic data import/export and transforming coordinate reference systems. Part II represents methods that build on these foundations. It covers advanced map making (including web mapping), "bridges" to GIS, sharing reproducible code, and how to do cross-validation in the presence of spatial autocorrelation. Part III applies the knowledge gained to tackle real-world problems, including representing and modeling transport systems, finding optimal locations for stores or services, and ecological modeling. Exercises at the end of each chapter give you the skills needed to tackle a range of geospatial problems. Solutions for each chapter and supplementary materials providing extended examples are available at https://geocompr.github.io/geocompkg/articles/.
Publisher: CRC Press
ISBN: 1351396900
Category : Mathematics
Languages : en
Pages : 354
Book Description
Geocomputation with R is for people who want to analyze, visualize and model geographic data with open source software. It is based on R, a statistical programming language that has powerful data processing, visualization, and geospatial capabilities. The book equips you with the knowledge and skills to tackle a wide range of issues manifested in geographic data, including those with scientific, societal, and environmental implications. This book will interest people from many backgrounds, especially Geographic Information Systems (GIS) users interested in applying their domain-specific knowledge in a powerful open source language for data science, and R users interested in extending their skills to handle spatial data. The book is divided into three parts: (I) Foundations, aimed at getting you up-to-speed with geographic data in R, (II) extensions, which covers advanced techniques, and (III) applications to real-world problems. The chapters cover progressively more advanced topics, with early chapters providing strong foundations on which the later chapters build. Part I describes the nature of spatial datasets in R and methods for manipulating them. It also covers geographic data import/export and transforming coordinate reference systems. Part II represents methods that build on these foundations. It covers advanced map making (including web mapping), "bridges" to GIS, sharing reproducible code, and how to do cross-validation in the presence of spatial autocorrelation. Part III applies the knowledge gained to tackle real-world problems, including representing and modeling transport systems, finding optimal locations for stores or services, and ecological modeling. Exercises at the end of each chapter give you the skills needed to tackle a range of geospatial problems. Solutions for each chapter and supplementary materials providing extended examples are available at https://geocompr.github.io/geocompkg/articles/.
An Introduction to Spatial Data Analysis
Author: Martin Wegmann
Publisher: Pelagic Publishing Ltd
ISBN: 1784272140
Category : Science
Languages : en
Pages : 372
Book Description
This is a book about how ecologists can integrate remote sensing and GIS in their research. It will allow readers to get started with the application of remote sensing and to understand its potential and limitations. Using practical examples, the book covers all necessary steps from planning field campaigns to deriving ecologically relevant information through remote sensing and modelling of species distributions. An Introduction to Spatial Data Analysis introduces spatial data handling using the open source software Quantum GIS (QGIS). In addition, readers will be guided through their first steps in the R programming language. The authors explain the fundamentals of spatial data handling and analysis, empowering the reader to turn data acquired in the field into actual spatial data. Readers will learn to process and analyse spatial data of different types and interpret the data and results. After finishing this book, readers will be able to address questions such as “What is the distance to the border of the protected area?”, “Which points are located close to a road?”, “Which fraction of land cover types exist in my study area?” using different software and techniques. This book is for novice spatial data users and does not assume any prior knowledge of spatial data itself or practical experience working with such data sets. Readers will likely include student and professional ecologists, geographers and any environmental scientists or practitioners who need to collect, visualize and analyse spatial data. The software used is the widely applied open source scientific programs QGIS and R. All scripts and data sets used in the book will be provided online at book.ecosens.org. This book covers specific methods including: what to consider before collecting in situ data how to work with spatial data collected in situ the difference between raster and vector data how to acquire further vector and raster data how to create relevant environmental information how to combine and analyse in situ and remote sensing data how to create useful maps for field work and presentations how to use QGIS and R for spatial analysis how to develop analysis scripts
Publisher: Pelagic Publishing Ltd
ISBN: 1784272140
Category : Science
Languages : en
Pages : 372
Book Description
This is a book about how ecologists can integrate remote sensing and GIS in their research. It will allow readers to get started with the application of remote sensing and to understand its potential and limitations. Using practical examples, the book covers all necessary steps from planning field campaigns to deriving ecologically relevant information through remote sensing and modelling of species distributions. An Introduction to Spatial Data Analysis introduces spatial data handling using the open source software Quantum GIS (QGIS). In addition, readers will be guided through their first steps in the R programming language. The authors explain the fundamentals of spatial data handling and analysis, empowering the reader to turn data acquired in the field into actual spatial data. Readers will learn to process and analyse spatial data of different types and interpret the data and results. After finishing this book, readers will be able to address questions such as “What is the distance to the border of the protected area?”, “Which points are located close to a road?”, “Which fraction of land cover types exist in my study area?” using different software and techniques. This book is for novice spatial data users and does not assume any prior knowledge of spatial data itself or practical experience working with such data sets. Readers will likely include student and professional ecologists, geographers and any environmental scientists or practitioners who need to collect, visualize and analyse spatial data. The software used is the widely applied open source scientific programs QGIS and R. All scripts and data sets used in the book will be provided online at book.ecosens.org. This book covers specific methods including: what to consider before collecting in situ data how to work with spatial data collected in situ the difference between raster and vector data how to acquire further vector and raster data how to create relevant environmental information how to combine and analyse in situ and remote sensing data how to create useful maps for field work and presentations how to use QGIS and R for spatial analysis how to develop analysis scripts
An Introduction To Species Distribution Modelling (SDM) Using QGIS And R
Author: Colin D MacLeod
Publisher:
ISBN: 9781909832220
Category : Education
Languages : en
Pages : 150
Book Description
This workbook provides five exercises which will introduce you to the basic spatial processing and analytical techniques required to create a biologically meaningful species distribution model (SDM).
Publisher:
ISBN: 9781909832220
Category : Education
Languages : en
Pages : 150
Book Description
This workbook provides five exercises which will introduce you to the basic spatial processing and analytical techniques required to create a biologically meaningful species distribution model (SDM).
Integration of GIS and Remote Sensing
Author: Victor Mesev
Publisher: John Wiley & Sons
ISBN: 0470864117
Category : Science
Languages : en
Pages : 312
Book Description
In an age of unprecedented proliferation of data from disparate sources the urgency is to create efficient methodologies that can optimise data combinations and at the same time solve increasingly complex application problems. Integration of GIS and Remote Sensing explores the tremendous potential that lies along the interface between GIS and remote sensing for activating interoperable databases and instigating information interchange. It concentrates on the rigorous and meticulous aspects of analytical data matching and thematic compatibility - the true roots of all branches of GIS/remote sensing applications. However closer harmonization is tempered by numerous technical and institutional issues, including scale incompatibility, measurement disparities, and the inescapable notion that data from GIS and remote sensing essentially represent diametrically opposing conceptual views of reality. The first part of the book defines and characterises GIS and remote sensing and presents the reader with an awareness of the many scale, taxonomical and analytical problems when attempting integration. The second part of the book moves on to demonstrate the benefits and costs of integration across a number of human and environmental applications. This book is an invaluable reference for students and professionals dealing not only with GIS and remote sensing, but also computer science, civil engineering, environmental science and urban planning within the academic, governmental and commercial/business sectors.
Publisher: John Wiley & Sons
ISBN: 0470864117
Category : Science
Languages : en
Pages : 312
Book Description
In an age of unprecedented proliferation of data from disparate sources the urgency is to create efficient methodologies that can optimise data combinations and at the same time solve increasingly complex application problems. Integration of GIS and Remote Sensing explores the tremendous potential that lies along the interface between GIS and remote sensing for activating interoperable databases and instigating information interchange. It concentrates on the rigorous and meticulous aspects of analytical data matching and thematic compatibility - the true roots of all branches of GIS/remote sensing applications. However closer harmonization is tempered by numerous technical and institutional issues, including scale incompatibility, measurement disparities, and the inescapable notion that data from GIS and remote sensing essentially represent diametrically opposing conceptual views of reality. The first part of the book defines and characterises GIS and remote sensing and presents the reader with an awareness of the many scale, taxonomical and analytical problems when attempting integration. The second part of the book moves on to demonstrate the benefits and costs of integration across a number of human and environmental applications. This book is an invaluable reference for students and professionals dealing not only with GIS and remote sensing, but also computer science, civil engineering, environmental science and urban planning within the academic, governmental and commercial/business sectors.
Spatial Analytics with ArcGIS
Author: Eric Pimpler
Publisher: Packt Publishing Ltd
ISBN: 1787124622
Category : Computers
Languages : en
Pages : 285
Book Description
Pattern Analysis and cluster mapping made easy About This Book Analyze patterns, clusters, and spatial relationships using ArcGIS tools Get up to speed in R programming to create custom tools for analysis Sift through tons of crime and real estate data and analyze it using the tools built in the book Who This Book Is For This book is for ArcGIS developers who want to perform complex geographic analysis through the use of spatial statistics tools including ArcGIS and R. No knowledge of R is assumed. What You Will Learn Get to know how to measure geographic distributions Perform clustering analysis including hot spot and outlier analysis Conduct data conversion tasks using the Utilities toolset Understand how to use the tools provided by the Mapping Clusters toolset in the Spatial Statistics Toolbox Get to grips with the basics of R for performing spatial statistical programming Create custom ArcGIS tools with R and ArcGIS Bridge Understand the application of Spatial Statistics tools and the R programming language through case studies In Detail Spatial statistics has the potential to provide insight that is not otherwise available through traditional GIS tools. This book is designed to introduce you to the use of spatial statistics so you can solve complex geographic analysis. The book begins by introducing you to the many spatial statistics tools available in ArcGIS. You will learn how to analyze patterns, map clusters, and model spatial relationships with these tools. Further on, you will explore how to extend the spatial statistics tools currently available in ArcGIS, and use the R programming language to create custom tools in ArcGIS through the ArcGIS Bridge using real-world examples. At the end of the book, you will be presented with two exciting case studies where you will be able to practically apply all your learning to analyze and gain insights into real estate data. Style and approach Filled with live examples that you can code along with, this book will show you different methods and techniques to effectively analyze spatial data with ArcGIS and the R language. The exciting case studies at the end will help you immediately put your learning to practice.
Publisher: Packt Publishing Ltd
ISBN: 1787124622
Category : Computers
Languages : en
Pages : 285
Book Description
Pattern Analysis and cluster mapping made easy About This Book Analyze patterns, clusters, and spatial relationships using ArcGIS tools Get up to speed in R programming to create custom tools for analysis Sift through tons of crime and real estate data and analyze it using the tools built in the book Who This Book Is For This book is for ArcGIS developers who want to perform complex geographic analysis through the use of spatial statistics tools including ArcGIS and R. No knowledge of R is assumed. What You Will Learn Get to know how to measure geographic distributions Perform clustering analysis including hot spot and outlier analysis Conduct data conversion tasks using the Utilities toolset Understand how to use the tools provided by the Mapping Clusters toolset in the Spatial Statistics Toolbox Get to grips with the basics of R for performing spatial statistical programming Create custom ArcGIS tools with R and ArcGIS Bridge Understand the application of Spatial Statistics tools and the R programming language through case studies In Detail Spatial statistics has the potential to provide insight that is not otherwise available through traditional GIS tools. This book is designed to introduce you to the use of spatial statistics so you can solve complex geographic analysis. The book begins by introducing you to the many spatial statistics tools available in ArcGIS. You will learn how to analyze patterns, map clusters, and model spatial relationships with these tools. Further on, you will explore how to extend the spatial statistics tools currently available in ArcGIS, and use the R programming language to create custom tools in ArcGIS through the ArcGIS Bridge using real-world examples. At the end of the book, you will be presented with two exciting case studies where you will be able to practically apply all your learning to analyze and gain insights into real estate data. Style and approach Filled with live examples that you can code along with, this book will show you different methods and techniques to effectively analyze spatial data with ArcGIS and the R language. The exciting case studies at the end will help you immediately put your learning to practice.
Remote Sensing and GIS for Ecologists
Author: Martin Wegmann
Publisher: Pelagic Publishing Ltd
ISBN: 1784270245
Category : Science
Languages : en
Pages : 410
Book Description
This is a book about how ecologists can integrate remote sensing and GIS in their daily work. It will allow ecologists to get started with the application of remote sensing and to understand its potential and limitations. Using practical examples, the book covers all necessary steps from planning field campaigns to deriving ecologically relevant information through remote sensing and modelling of species distributions. All practical examples in this book rely on OpenSource software and freely available data sets. Quantum GIS (QGIS) is introduced for basic GIS data handling, and in-depth spatial analytics and statistics are conducted with the software packages R and GRASS. Readers will learn how to apply remote sensing within ecological research projects, how to approach spatial data sampling and how to interpret remote sensing derived products. The authors discuss a wide range of statistical analyses with regard to satellite data as well as specialised topics such as time-series analysis. Extended scripts on how to create professional looking maps and graphics are also provided. This book is a valuable resource for students and scientists in the fields of conservation and ecology interested in learning how to get started in applying remote sensing in ecological research and conservation planning.
Publisher: Pelagic Publishing Ltd
ISBN: 1784270245
Category : Science
Languages : en
Pages : 410
Book Description
This is a book about how ecologists can integrate remote sensing and GIS in their daily work. It will allow ecologists to get started with the application of remote sensing and to understand its potential and limitations. Using practical examples, the book covers all necessary steps from planning field campaigns to deriving ecologically relevant information through remote sensing and modelling of species distributions. All practical examples in this book rely on OpenSource software and freely available data sets. Quantum GIS (QGIS) is introduced for basic GIS data handling, and in-depth spatial analytics and statistics are conducted with the software packages R and GRASS. Readers will learn how to apply remote sensing within ecological research projects, how to approach spatial data sampling and how to interpret remote sensing derived products. The authors discuss a wide range of statistical analyses with regard to satellite data as well as specialised topics such as time-series analysis. Extended scripts on how to create professional looking maps and graphics are also provided. This book is a valuable resource for students and scientists in the fields of conservation and ecology interested in learning how to get started in applying remote sensing in ecological research and conservation planning.
Geospatial Analysis
Author: Michael John De Smith
Publisher: Troubador Publishing Ltd
ISBN: 1905886608
Category : Mathematics
Languages : en
Pages : 417
Book Description
Addresses a range of analytical techniques that are provided within modern Geographic Information Systems and related geospatial software products. This guide covers: the principal concepts of geospatial analysis; core components of geospatial analysis; and, surface analysis, including surface form analysis, gridding and interpolation methods.
Publisher: Troubador Publishing Ltd
ISBN: 1905886608
Category : Mathematics
Languages : en
Pages : 417
Book Description
Addresses a range of analytical techniques that are provided within modern Geographic Information Systems and related geospatial software products. This guide covers: the principal concepts of geospatial analysis; core components of geospatial analysis; and, surface analysis, including surface form analysis, gridding and interpolation methods.