Author: Richard Fitzpatrick
Publisher: Cambridge University Press
ISBN: 1139510940
Category : Science
Languages : en
Pages : 277
Book Description
This accessible text on classical celestial mechanics, the principles governing the motions of bodies in the Solar System, provides a clear and concise treatment of virtually all of the major features of solar system dynamics. Building on advanced topics in classical mechanics such as rigid body rotation, Langrangian mechanics and orbital perturbation theory, this text has been written for advanced undergraduates and beginning graduate students in astronomy, physics, mathematics and related fields. Specific topics covered include Keplerian orbits, the perihelion precession of the planets, tidal interactions between the Earth, Moon and Sun, the Roche radius, the stability of Lagrange points in the three-body problem and lunar motion. More than 100 exercises allow students to gauge their understanding and a solutions manual is available to instructors. Suitable for a first course in celestial mechanics, this text is the ideal bridge to higher level treatments.
An Introduction to Celestial Mechanics
Author: Richard Fitzpatrick
Publisher: Cambridge University Press
ISBN: 1139510940
Category : Science
Languages : en
Pages : 277
Book Description
This accessible text on classical celestial mechanics, the principles governing the motions of bodies in the Solar System, provides a clear and concise treatment of virtually all of the major features of solar system dynamics. Building on advanced topics in classical mechanics such as rigid body rotation, Langrangian mechanics and orbital perturbation theory, this text has been written for advanced undergraduates and beginning graduate students in astronomy, physics, mathematics and related fields. Specific topics covered include Keplerian orbits, the perihelion precession of the planets, tidal interactions between the Earth, Moon and Sun, the Roche radius, the stability of Lagrange points in the three-body problem and lunar motion. More than 100 exercises allow students to gauge their understanding and a solutions manual is available to instructors. Suitable for a first course in celestial mechanics, this text is the ideal bridge to higher level treatments.
Publisher: Cambridge University Press
ISBN: 1139510940
Category : Science
Languages : en
Pages : 277
Book Description
This accessible text on classical celestial mechanics, the principles governing the motions of bodies in the Solar System, provides a clear and concise treatment of virtually all of the major features of solar system dynamics. Building on advanced topics in classical mechanics such as rigid body rotation, Langrangian mechanics and orbital perturbation theory, this text has been written for advanced undergraduates and beginning graduate students in astronomy, physics, mathematics and related fields. Specific topics covered include Keplerian orbits, the perihelion precession of the planets, tidal interactions between the Earth, Moon and Sun, the Roche radius, the stability of Lagrange points in the three-body problem and lunar motion. More than 100 exercises allow students to gauge their understanding and a solutions manual is available to instructors. Suitable for a first course in celestial mechanics, this text is the ideal bridge to higher level treatments.
An Introduction to Celestial Mechanics
Author: Forest Ray Moulton
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 478
Book Description
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 478
Book Description
Adventures in Celestial Mechanics
Author: Victor G. Szebehely
Publisher: John Wiley & Sons
ISBN: 3527617795
Category : Technology & Engineering
Languages : en
Pages : 320
Book Description
A fascinating introduction to the basic principles of orbital mechanics It has been three hundred years since Isaac Newton first formulated laws to explain the orbits of the Moon and the planets of our solar system. In so doing he laid the groundwork for modern science's understanding of the workings of the cosmos and helped pave the way to the age of space exploration. Adventures in Celestial Mechanics offers students an enjoyable way to become acquainted with the basic principles involved in the motions of natural and human-made bodies in space. Packed with examples in which these principles are applied to everything from a falling stone to the Sun, from space probes to galaxies, this updated and revised Second Edition is an ideal introduction to celestial mechanics for students of astronomy, physics, and aerospace engineering. Other features that helped make the first edition of this book the text of choice in colleges and universities across North America include: * Lively historical accounts of important discoveries in celestial mechanics and the men and women who made them * Superb illustrations, photographs, charts, and tables * Helpful chapter-end examples and problem sets
Publisher: John Wiley & Sons
ISBN: 3527617795
Category : Technology & Engineering
Languages : en
Pages : 320
Book Description
A fascinating introduction to the basic principles of orbital mechanics It has been three hundred years since Isaac Newton first formulated laws to explain the orbits of the Moon and the planets of our solar system. In so doing he laid the groundwork for modern science's understanding of the workings of the cosmos and helped pave the way to the age of space exploration. Adventures in Celestial Mechanics offers students an enjoyable way to become acquainted with the basic principles involved in the motions of natural and human-made bodies in space. Packed with examples in which these principles are applied to everything from a falling stone to the Sun, from space probes to galaxies, this updated and revised Second Edition is an ideal introduction to celestial mechanics for students of astronomy, physics, and aerospace engineering. Other features that helped make the first edition of this book the text of choice in colleges and universities across North America include: * Lively historical accounts of important discoveries in celestial mechanics and the men and women who made them * Superb illustrations, photographs, charts, and tables * Helpful chapter-end examples and problem sets
Celestial Mechanics and Astrodynamics: Theory and Practice
Author: Pini Gurfil
Publisher: Springer
ISBN: 3662503700
Category : Science
Languages : en
Pages : 553
Book Description
This volume is designed as an introductory text and reference book for graduate students, researchers and practitioners in the fields of astronomy, astrodynamics, satellite systems, space sciences and astrophysics. The purpose of the book is to emphasize the similarities between celestial mechanics and astrodynamics, and to present recent advances in these two fields so that the reader can understand the inter-relations and mutual influences. The juxtaposition of celestial mechanics and astrodynamics is a unique approach that is expected to be a refreshing attempt to discuss both the mechanics of space flight and the dynamics of celestial objects. “Celestial Mechanics and Astrodynamics: Theory and Practice” also presents the main challenges and future prospects for the two fields in an elaborate, comprehensive and rigorous manner. The book presents homogenous and fluent discussions of the key problems, rendering a portrayal of recent advances in the field together with some basic concepts and essential infrastructure in orbital mechanics. The text contains introductory material followed by a gradual development of ideas interweaved to yield a coherent presentation of advanced topics.
Publisher: Springer
ISBN: 3662503700
Category : Science
Languages : en
Pages : 553
Book Description
This volume is designed as an introductory text and reference book for graduate students, researchers and practitioners in the fields of astronomy, astrodynamics, satellite systems, space sciences and astrophysics. The purpose of the book is to emphasize the similarities between celestial mechanics and astrodynamics, and to present recent advances in these two fields so that the reader can understand the inter-relations and mutual influences. The juxtaposition of celestial mechanics and astrodynamics is a unique approach that is expected to be a refreshing attempt to discuss both the mechanics of space flight and the dynamics of celestial objects. “Celestial Mechanics and Astrodynamics: Theory and Practice” also presents the main challenges and future prospects for the two fields in an elaborate, comprehensive and rigorous manner. The book presents homogenous and fluent discussions of the key problems, rendering a portrayal of recent advances in the field together with some basic concepts and essential infrastructure in orbital mechanics. The text contains introductory material followed by a gradual development of ideas interweaved to yield a coherent presentation of advanced topics.
An Introduction to the Mathematics and Methods of Astrodynamics
Author: Richard H. Battin
Publisher: AIAA
ISBN: 9781600860263
Category : Astrodynamics
Languages : en
Pages : 840
Book Description
Publisher: AIAA
ISBN: 9781600860263
Category : Astrodynamics
Languages : en
Pages : 840
Book Description
Stability and Chaos in Celestial Mechanics
Author: Alessandra Celletti
Publisher: Springer Science & Business Media
ISBN: 3540851461
Category : Science
Languages : en
Pages : 265
Book Description
This overview of classical celestial mechanics focuses the interplay with dynamical systems. Paradigmatic models introduce key concepts – order, chaos, invariant curves and cantori – followed by the investigation of dynamical systems with numerical methods.
Publisher: Springer Science & Business Media
ISBN: 3540851461
Category : Science
Languages : en
Pages : 265
Book Description
This overview of classical celestial mechanics focuses the interplay with dynamical systems. Paradigmatic models introduce key concepts – order, chaos, invariant curves and cantori – followed by the investigation of dynamical systems with numerical methods.
Lectures on Celestial Mechanics
Author: Carl L. Siegel
Publisher: Springer Science & Business Media
ISBN: 9783540586562
Category : Mathematics
Languages : en
Pages : 312
Book Description
The present book represents to a large extent the translation of the German "Vorlesungen über Himmelsmechanik" by C. L. Siegel. The demand for a new edition and for an English translation gave rise to the present volume which, however, goes beyond a mere translation. To take account of recent work in this field a number of sections have been added, especially in the third chapter which deals with the stability theory. Still, it has not been attempted to give a complete presentation of the subject, and the basic prganization of Siegel's original book has not been altered. The emphasis lies in the development of results and analytic methods which are based on the ideas of H. Poincare, G. D. Birkhoff, A. Liapunov and, as far as Chapter I is concerned, on the work of K. F. Sundman and C. L. Siegel. In recent years the measure-theoretical aspects of mechanics have been revitalized and have led to new results which will not be discussed here. In this connection we refer, in particular, to the interesting book by V. I. Arnold and A. Avez on "Problemes Ergodiques de la Mecanique Classique", which stresses the interaction of ergodic theory and mechanics. We list the points in which the present book differs from the German text. In the first chapter two sections on the tri pie collision in the three body problem have been added by C. L. Siegel.
Publisher: Springer Science & Business Media
ISBN: 9783540586562
Category : Mathematics
Languages : en
Pages : 312
Book Description
The present book represents to a large extent the translation of the German "Vorlesungen über Himmelsmechanik" by C. L. Siegel. The demand for a new edition and for an English translation gave rise to the present volume which, however, goes beyond a mere translation. To take account of recent work in this field a number of sections have been added, especially in the third chapter which deals with the stability theory. Still, it has not been attempted to give a complete presentation of the subject, and the basic prganization of Siegel's original book has not been altered. The emphasis lies in the development of results and analytic methods which are based on the ideas of H. Poincare, G. D. Birkhoff, A. Liapunov and, as far as Chapter I is concerned, on the work of K. F. Sundman and C. L. Siegel. In recent years the measure-theoretical aspects of mechanics have been revitalized and have led to new results which will not be discussed here. In this connection we refer, in particular, to the interesting book by V. I. Arnold and A. Avez on "Problemes Ergodiques de la Mecanique Classique", which stresses the interaction of ergodic theory and mechanics. We list the points in which the present book differs from the German text. In the first chapter two sections on the tri pie collision in the three body problem have been added by C. L. Siegel.
An Introduction to Celestial Mechanics
Author: Forest Ray Moulton
Publisher:
ISBN:
Category : Celestial mechanics
Languages : en
Pages : 412
Book Description
Publisher:
ISBN:
Category : Celestial mechanics
Languages : en
Pages : 412
Book Description
Capture Dynamics and Chaotic Motions in Celestial Mechanics
Author: Edward Belbruno
Publisher: Princeton University Press
ISBN: 069118643X
Category : Mathematics
Languages : en
Pages : 232
Book Description
This book describes a revolutionary new approach to determining low energy routes for spacecraft and comets by exploiting regions in space where motion is very sensitive (or chaotic). It also represents an ideal introductory text to celestial mechanics, dynamical systems, and dynamical astronomy. Bringing together wide-ranging research by others with his own original work, much of it new or previously unpublished, Edward Belbruno argues that regions supporting chaotic motions, termed weak stability boundaries, can be estimated. Although controversial until quite recently, this method was in fact first applied in 1991, when Belbruno used a new route developed from this theory to get a stray Japanese satellite back on course to the moon. This application provided a major verification of his theory, representing the first application of chaos to space travel. Since that time, the theory has been used in other space missions, and NASA is implementing new applications under Belbruno's direction. The use of invariant manifolds to find low energy orbits is another method here addressed. Recent work on estimating weak stability boundaries and related regions has also given mathematical insight into chaotic motion in the three-body problem. Belbruno further considers different capture and escape mechanisms, and resonance transitions. Providing a rigorous theoretical framework that incorporates both recent developments such as Aubrey-Mather theory and established fundamentals like Kolmogorov-Arnold-Moser theory, this book represents an indispensable resource for graduate students and researchers in the disciplines concerned as well as practitioners in fields such as aerospace engineering.
Publisher: Princeton University Press
ISBN: 069118643X
Category : Mathematics
Languages : en
Pages : 232
Book Description
This book describes a revolutionary new approach to determining low energy routes for spacecraft and comets by exploiting regions in space where motion is very sensitive (or chaotic). It also represents an ideal introductory text to celestial mechanics, dynamical systems, and dynamical astronomy. Bringing together wide-ranging research by others with his own original work, much of it new or previously unpublished, Edward Belbruno argues that regions supporting chaotic motions, termed weak stability boundaries, can be estimated. Although controversial until quite recently, this method was in fact first applied in 1991, when Belbruno used a new route developed from this theory to get a stray Japanese satellite back on course to the moon. This application provided a major verification of his theory, representing the first application of chaos to space travel. Since that time, the theory has been used in other space missions, and NASA is implementing new applications under Belbruno's direction. The use of invariant manifolds to find low energy orbits is another method here addressed. Recent work on estimating weak stability boundaries and related regions has also given mathematical insight into chaotic motion in the three-body problem. Belbruno further considers different capture and escape mechanisms, and resonance transitions. Providing a rigorous theoretical framework that incorporates both recent developments such as Aubrey-Mather theory and established fundamentals like Kolmogorov-Arnold-Moser theory, this book represents an indispensable resource for graduate students and researchers in the disciplines concerned as well as practitioners in fields such as aerospace engineering.
Mathematical Aspects of Classical and Celestial Mechanics
Author: Vladimir I. Arnold
Publisher: Springer Science & Business Media
ISBN: 3540489266
Category : Mathematics
Languages : en
Pages : 505
Book Description
The main purpose of the book is to acquaint mathematicians, physicists and engineers with classical mechanics as a whole, in both its traditional and its contemporary aspects. As such, it describes the fundamental principles, problems, and methods of classical mechanics, with the emphasis firmly laid on the working apparatus, rather than the physical foundations or applications. Chapters cover the n-body problem, symmetry groups of mechanical systems and the corresponding conservation laws, the problem of the integrability of the equations of motion, the theory of oscillations and perturbation theory.
Publisher: Springer Science & Business Media
ISBN: 3540489266
Category : Mathematics
Languages : en
Pages : 505
Book Description
The main purpose of the book is to acquaint mathematicians, physicists and engineers with classical mechanics as a whole, in both its traditional and its contemporary aspects. As such, it describes the fundamental principles, problems, and methods of classical mechanics, with the emphasis firmly laid on the working apparatus, rather than the physical foundations or applications. Chapters cover the n-body problem, symmetry groups of mechanical systems and the corresponding conservation laws, the problem of the integrability of the equations of motion, the theory of oscillations and perturbation theory.