Author: Ioannis A. Raptis
Publisher: Springer Science & Business Media
ISBN: 9400700237
Category : Technology & Engineering
Languages : en
Pages : 210
Book Description
There has been significant interest for designing flight controllers for small-scale unmanned helicopters. Such helicopters preserve all the physical attributes of their full-scale counterparts, being at the same time more agile and dexterous. This book presents a comprehensive and well justified analysis for designing flight controllers for small-scale unmanned helicopters guarantying flight stability and tracking accuracy. The design of the flight controller is a critical and integral part for developing an autonomous helicopter platform. Helicopters are underactuated, highly nonlinear systems with significant dynamic coupling that needs to be considered and accounted for during controller design and implementation. Most reliable mathematical tools for analysis of control systems relate to modern control theory. Modern control techniques are model-based since the controller architecture depends on the dynamic representation of the system to be controlled. Therefore, the flight controller design problem is tightly connected with the helicopter modeling. This book provides a step-by-step methodology for designing, evaluating and implementing efficient flight controllers for small-scale helicopters. Design issues that are analytically covered include: • An illustrative presentation of both linear and nonlinear models of ordinary differential equations representing the helicopter dynamics. A detailed presentation of the helicopter equations of motion is given for the derivation of both model types. In addition, an insightful presentation of the main rotor's mechanism, aerodynamics and dynamics is also provided. Both model types are of low complexity, physically meaningful and capable of encapsulating the dynamic behavior of a large class of small-scale helicopters. • An illustrative and rigorous derivation of mathematical control algorithms based on both the linear and nonlinear representation of the helicopter dynamics. Flight controller designs guarantee that the tracking objectives of the helicopter's inertial position (or velocity) and heading are achieved. Each controller is carefully constructed by considering the small-scale helicopter's physical flight capabilities. Concepts of advanced stability analysis are used to improve the efficiency and reduce the complexity of the flight control system. Controller designs are derived in both continuous time and discrete time covering discretization issues, which emerge from the implementation of the control algorithm using microprocessors. • Presentation of the most powerful, practical and efficient methods for extracting the helicopter model parameters based on input/output responses, collected by the measurement instruments. This topic is of particular importance for real-life implementation of the control algorithms. This book is suitable for students and researches interested in the development and the mathematical derivation of flight controllers for small-scale helicopters. Background knowledge in modern control is required.
Linear and Nonlinear Control of Small-Scale Unmanned Helicopters
Author: Ioannis A. Raptis
Publisher: Springer Science & Business Media
ISBN: 9400700237
Category : Technology & Engineering
Languages : en
Pages : 210
Book Description
There has been significant interest for designing flight controllers for small-scale unmanned helicopters. Such helicopters preserve all the physical attributes of their full-scale counterparts, being at the same time more agile and dexterous. This book presents a comprehensive and well justified analysis for designing flight controllers for small-scale unmanned helicopters guarantying flight stability and tracking accuracy. The design of the flight controller is a critical and integral part for developing an autonomous helicopter platform. Helicopters are underactuated, highly nonlinear systems with significant dynamic coupling that needs to be considered and accounted for during controller design and implementation. Most reliable mathematical tools for analysis of control systems relate to modern control theory. Modern control techniques are model-based since the controller architecture depends on the dynamic representation of the system to be controlled. Therefore, the flight controller design problem is tightly connected with the helicopter modeling. This book provides a step-by-step methodology for designing, evaluating and implementing efficient flight controllers for small-scale helicopters. Design issues that are analytically covered include: • An illustrative presentation of both linear and nonlinear models of ordinary differential equations representing the helicopter dynamics. A detailed presentation of the helicopter equations of motion is given for the derivation of both model types. In addition, an insightful presentation of the main rotor's mechanism, aerodynamics and dynamics is also provided. Both model types are of low complexity, physically meaningful and capable of encapsulating the dynamic behavior of a large class of small-scale helicopters. • An illustrative and rigorous derivation of mathematical control algorithms based on both the linear and nonlinear representation of the helicopter dynamics. Flight controller designs guarantee that the tracking objectives of the helicopter's inertial position (or velocity) and heading are achieved. Each controller is carefully constructed by considering the small-scale helicopter's physical flight capabilities. Concepts of advanced stability analysis are used to improve the efficiency and reduce the complexity of the flight control system. Controller designs are derived in both continuous time and discrete time covering discretization issues, which emerge from the implementation of the control algorithm using microprocessors. • Presentation of the most powerful, practical and efficient methods for extracting the helicopter model parameters based on input/output responses, collected by the measurement instruments. This topic is of particular importance for real-life implementation of the control algorithms. This book is suitable for students and researches interested in the development and the mathematical derivation of flight controllers for small-scale helicopters. Background knowledge in modern control is required.
Publisher: Springer Science & Business Media
ISBN: 9400700237
Category : Technology & Engineering
Languages : en
Pages : 210
Book Description
There has been significant interest for designing flight controllers for small-scale unmanned helicopters. Such helicopters preserve all the physical attributes of their full-scale counterparts, being at the same time more agile and dexterous. This book presents a comprehensive and well justified analysis for designing flight controllers for small-scale unmanned helicopters guarantying flight stability and tracking accuracy. The design of the flight controller is a critical and integral part for developing an autonomous helicopter platform. Helicopters are underactuated, highly nonlinear systems with significant dynamic coupling that needs to be considered and accounted for during controller design and implementation. Most reliable mathematical tools for analysis of control systems relate to modern control theory. Modern control techniques are model-based since the controller architecture depends on the dynamic representation of the system to be controlled. Therefore, the flight controller design problem is tightly connected with the helicopter modeling. This book provides a step-by-step methodology for designing, evaluating and implementing efficient flight controllers for small-scale helicopters. Design issues that are analytically covered include: • An illustrative presentation of both linear and nonlinear models of ordinary differential equations representing the helicopter dynamics. A detailed presentation of the helicopter equations of motion is given for the derivation of both model types. In addition, an insightful presentation of the main rotor's mechanism, aerodynamics and dynamics is also provided. Both model types are of low complexity, physically meaningful and capable of encapsulating the dynamic behavior of a large class of small-scale helicopters. • An illustrative and rigorous derivation of mathematical control algorithms based on both the linear and nonlinear representation of the helicopter dynamics. Flight controller designs guarantee that the tracking objectives of the helicopter's inertial position (or velocity) and heading are achieved. Each controller is carefully constructed by considering the small-scale helicopter's physical flight capabilities. Concepts of advanced stability analysis are used to improve the efficiency and reduce the complexity of the flight control system. Controller designs are derived in both continuous time and discrete time covering discretization issues, which emerge from the implementation of the control algorithm using microprocessors. • Presentation of the most powerful, practical and efficient methods for extracting the helicopter model parameters based on input/output responses, collected by the measurement instruments. This topic is of particular importance for real-life implementation of the control algorithms. This book is suitable for students and researches interested in the development and the mathematical derivation of flight controllers for small-scale helicopters. Background knowledge in modern control is required.
Autonomous Flying Robots
Author: Kenzo Nonami
Publisher: Springer Science & Business Media
ISBN: 4431538569
Category : Technology & Engineering
Languages : en
Pages : 341
Book Description
The advance in robotics has boosted the application of autonomous vehicles to perform tedious and risky tasks or to be cost-effective substitutes for their - man counterparts. Based on their working environment, a rough classi cation of the autonomous vehicles would include unmanned aerial vehicles (UAVs), - manned ground vehicles (UGVs), autonomous underwater vehicles (AUVs), and autonomous surface vehicles (ASVs). UAVs, UGVs, AUVs, and ASVs are called UVs (unmanned vehicles) nowadays. In recent decades, the development of - manned autonomous vehicles have been of great interest, and different kinds of autonomous vehicles have been studied and developed all over the world. In part- ular, UAVs have many applications in emergency situations; humans often cannot come close to a dangerous natural disaster such as an earthquake, a ood, an active volcano, or a nuclear disaster. Since the development of the rst UAVs, research efforts have been focused on military applications. Recently, however, demand has arisen for UAVs such as aero-robotsand ying robotsthat can be used in emergency situations and in industrial applications. Among the wide variety of UAVs that have been developed, small-scale HUAVs (helicopter-based UAVs) have the ability to take off and land vertically as well as the ability to cruise in ight, but their most importantcapability is hovering. Hoveringat a point enables us to make more eff- tive observations of a target. Furthermore, small-scale HUAVs offer the advantages of low cost and easy operation.
Publisher: Springer Science & Business Media
ISBN: 4431538569
Category : Technology & Engineering
Languages : en
Pages : 341
Book Description
The advance in robotics has boosted the application of autonomous vehicles to perform tedious and risky tasks or to be cost-effective substitutes for their - man counterparts. Based on their working environment, a rough classi cation of the autonomous vehicles would include unmanned aerial vehicles (UAVs), - manned ground vehicles (UGVs), autonomous underwater vehicles (AUVs), and autonomous surface vehicles (ASVs). UAVs, UGVs, AUVs, and ASVs are called UVs (unmanned vehicles) nowadays. In recent decades, the development of - manned autonomous vehicles have been of great interest, and different kinds of autonomous vehicles have been studied and developed all over the world. In part- ular, UAVs have many applications in emergency situations; humans often cannot come close to a dangerous natural disaster such as an earthquake, a ood, an active volcano, or a nuclear disaster. Since the development of the rst UAVs, research efforts have been focused on military applications. Recently, however, demand has arisen for UAVs such as aero-robotsand ying robotsthat can be used in emergency situations and in industrial applications. Among the wide variety of UAVs that have been developed, small-scale HUAVs (helicopter-based UAVs) have the ability to take off and land vertically as well as the ability to cruise in ight, but their most importantcapability is hovering. Hoveringat a point enables us to make more eff- tive observations of a target. Furthermore, small-scale HUAVs offer the advantages of low cost and easy operation.
Unmanned Aerial Vehicles
Author: Rogelio Lozano
Publisher: John Wiley & Sons
ISBN: 1118599861
Category : Science
Languages : en
Pages : 280
Book Description
This book presents the basic tools required to obtain the dynamical models for aerial vehicles (in the Newtonian or Lagrangian approach). Several control laws are presented for mini-helicopters, quadrotors, mini-blimps, flapping-wing aerial vehicles, planes, etc. Finally, this book has two chapters devoted to embedded control systems and Kalman filters applied for aerial vehicles control and navigation. This book presents the state of the art in the area of UAVs. The aerodynamical models of different configurations are presented in detail as well as the control strategies which are validated in experimental platforms.
Publisher: John Wiley & Sons
ISBN: 1118599861
Category : Science
Languages : en
Pages : 280
Book Description
This book presents the basic tools required to obtain the dynamical models for aerial vehicles (in the Newtonian or Lagrangian approach). Several control laws are presented for mini-helicopters, quadrotors, mini-blimps, flapping-wing aerial vehicles, planes, etc. Finally, this book has two chapters devoted to embedded control systems and Kalman filters applied for aerial vehicles control and navigation. This book presents the state of the art in the area of UAVs. The aerodynamical models of different configurations are presented in detail as well as the control strategies which are validated in experimental platforms.
Issues in Robotics and Automation: 2011 Edition
Author:
Publisher: ScholarlyEditions
ISBN: 1464965226
Category : Technology & Engineering
Languages : en
Pages : 1332
Book Description
Issues in Robotics and Automation / 2011 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Robotics and Automation. The editors have built Issues in Robotics and Automation: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Robotics and Automation in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Robotics and Automation: 2011 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.
Publisher: ScholarlyEditions
ISBN: 1464965226
Category : Technology & Engineering
Languages : en
Pages : 1332
Book Description
Issues in Robotics and Automation / 2011 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Robotics and Automation. The editors have built Issues in Robotics and Automation: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Robotics and Automation in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Robotics and Automation: 2011 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.
Unmanned Rotorcraft Systems
Author: Guowei Cai
Publisher: Springer Science & Business Media
ISBN: 0857296353
Category : Technology & Engineering
Languages : en
Pages : 282
Book Description
Unmanned Rotorcraft Systems explores the research and development of fully-functional miniature UAV (unmanned aerial vehicle) rotorcraft, and provides a complete treatment of the design of autonomous miniature rotorcraft UAVs. The unmanned system is an integration of advanced technologies developed in communications, computing, and control areas, and is an excellent testing ground for trialing and implementing modern control techniques. Included are detailed expositions of systematic hardware construction, software systems integration, aerodynamic modeling; and automatic flight control system design. Emphasis is placed on the cooperative control and flight formation of multiple UAVs, vision-based ground target tracking, and landing on moving platforms. Other issues such as the development of GPS-less indoor micro aerial vehicles and vision-based navigation are also discussed in depth: utilizing the vision-based system for accomplishing ground target tracking, attacking and landing, cooperative control and flight formation of multiple unmanned rotorcraft; and future research directions on the related areas.
Publisher: Springer Science & Business Media
ISBN: 0857296353
Category : Technology & Engineering
Languages : en
Pages : 282
Book Description
Unmanned Rotorcraft Systems explores the research and development of fully-functional miniature UAV (unmanned aerial vehicle) rotorcraft, and provides a complete treatment of the design of autonomous miniature rotorcraft UAVs. The unmanned system is an integration of advanced technologies developed in communications, computing, and control areas, and is an excellent testing ground for trialing and implementing modern control techniques. Included are detailed expositions of systematic hardware construction, software systems integration, aerodynamic modeling; and automatic flight control system design. Emphasis is placed on the cooperative control and flight formation of multiple UAVs, vision-based ground target tracking, and landing on moving platforms. Other issues such as the development of GPS-less indoor micro aerial vehicles and vision-based navigation are also discussed in depth: utilizing the vision-based system for accomplishing ground target tracking, attacking and landing, cooperative control and flight formation of multiple unmanned rotorcraft; and future research directions on the related areas.
Quad Rotorcraft Control
Author: Luis Rodolfo García Carrillo
Publisher: Springer Science & Business Media
ISBN: 144714399X
Category : Technology & Engineering
Languages : en
Pages : 191
Book Description
Quad Rotorcraft Control develops original control methods for the navigation and hovering flight of an autonomous mini-quad-rotor robotic helicopter. These methods use an imaging system and a combination of inertial and altitude sensors to localize and guide the movement of the unmanned aerial vehicle relative to its immediate environment. The history, classification and applications of UAVs are introduced, followed by a description of modelling techniques for quad-rotors and the experimental platform itself. A control strategy for the improvement of attitude stabilization in quad-rotors is then proposed and tested in real-time experiments. The strategy, based on the use low-cost components and with experimentally-established robustness, avoids drift in the UAV’s angular position by the addition of an internal control loop to each electronic speed controller ensuring that, during hovering flight, all four motors turn at almost the same speed. The quad-rotor’s Euler angles being very close to the origin, other sensors like GPS or image-sensing equipment can be incorporated to perform autonomous positioning or trajectory-tracking tasks. Two vision-based strategies, each designed to deal with a specific kind of mission, are introduced and separately tested. The first stabilizes the quad-rotor over a landing pad on the ground; it extracts the 3-dimensional position using homography estimation and derives translational velocity by optical flow calculation. The second combines colour-extraction and line-detection algorithms to control the quad-rotor’s 3-dimensional position and achieves forward velocity regulation during a road-following task. In order to estimate the translational-dynamical characteristics of the quad-rotor (relative position and translational velocity) as they evolve within a building or other unstructured, GPS-deprived environment, imaging, inertial and altitude sensors are combined in a state observer. The text give the reader a current view of the problems encountered in UAV control, specifically those relating to quad-rotor flying machines and it will interest researchers and graduate students working in that field. The vision-based control strategies presented help the reader to a better understanding of how an imaging system can be used to obtain the information required for performance of the hovering and navigation tasks ubiquitous in rotored UAV operation.
Publisher: Springer Science & Business Media
ISBN: 144714399X
Category : Technology & Engineering
Languages : en
Pages : 191
Book Description
Quad Rotorcraft Control develops original control methods for the navigation and hovering flight of an autonomous mini-quad-rotor robotic helicopter. These methods use an imaging system and a combination of inertial and altitude sensors to localize and guide the movement of the unmanned aerial vehicle relative to its immediate environment. The history, classification and applications of UAVs are introduced, followed by a description of modelling techniques for quad-rotors and the experimental platform itself. A control strategy for the improvement of attitude stabilization in quad-rotors is then proposed and tested in real-time experiments. The strategy, based on the use low-cost components and with experimentally-established robustness, avoids drift in the UAV’s angular position by the addition of an internal control loop to each electronic speed controller ensuring that, during hovering flight, all four motors turn at almost the same speed. The quad-rotor’s Euler angles being very close to the origin, other sensors like GPS or image-sensing equipment can be incorporated to perform autonomous positioning or trajectory-tracking tasks. Two vision-based strategies, each designed to deal with a specific kind of mission, are introduced and separately tested. The first stabilizes the quad-rotor over a landing pad on the ground; it extracts the 3-dimensional position using homography estimation and derives translational velocity by optical flow calculation. The second combines colour-extraction and line-detection algorithms to control the quad-rotor’s 3-dimensional position and achieves forward velocity regulation during a road-following task. In order to estimate the translational-dynamical characteristics of the quad-rotor (relative position and translational velocity) as they evolve within a building or other unstructured, GPS-deprived environment, imaging, inertial and altitude sensors are combined in a state observer. The text give the reader a current view of the problems encountered in UAV control, specifically those relating to quad-rotor flying machines and it will interest researchers and graduate students working in that field. The vision-based control strategies presented help the reader to a better understanding of how an imaging system can be used to obtain the information required for performance of the hovering and navigation tasks ubiquitous in rotored UAV operation.
Nonlinear Kalman Filter for Multi-Sensor Navigation of Unmanned Aerial Vehicles
Author: Jean-Philippe Condomines
Publisher: Elsevier
ISBN: 0081027443
Category : Technology & Engineering
Languages : en
Pages : 256
Book Description
Nonlinear Kalman Filter for Multi-Sensor Navigation of Unmanned Aerial Vehicles covers state estimation development approaches for Mini-UAV. The book focuses on Kalman filtering technics for UAV design, proposing a new design methodology and case study related to inertial navigation systems for drones. Both simulation and real experiment results are presented, thus showing new and promising perspectives. - Gives a state estimation development approach for mini-UAVs - Explains Kalman filtering techniques - Introduce a new design method for unmanned aerial vehicles - Introduce cases relating to the inertial navigation system of drones
Publisher: Elsevier
ISBN: 0081027443
Category : Technology & Engineering
Languages : en
Pages : 256
Book Description
Nonlinear Kalman Filter for Multi-Sensor Navigation of Unmanned Aerial Vehicles covers state estimation development approaches for Mini-UAV. The book focuses on Kalman filtering technics for UAV design, proposing a new design methodology and case study related to inertial navigation systems for drones. Both simulation and real experiment results are presented, thus showing new and promising perspectives. - Gives a state estimation development approach for mini-UAVs - Explains Kalman filtering techniques - Introduce a new design method for unmanned aerial vehicles - Introduce cases relating to the inertial navigation system of drones
Advances in Unmanned Aerial Vehicles
Author: Kimon P. Valavanis
Publisher: Springer Science & Business Media
ISBN: 1402061145
Category : Technology & Engineering
Languages : en
Pages : 552
Book Description
The past decade has seen tremendous interest in the production and refinement of unmanned aerial vehicles, both fixed-wing, such as airplanes and rotary-wing, such as helicopters and vertical takeoff and landing vehicles. This book provides a diversified survey of research and development on small and miniature unmanned aerial vehicles of both fixed and rotary wing designs. From historical background to proposed new applications, this is the most comprehensive reference yet.
Publisher: Springer Science & Business Media
ISBN: 1402061145
Category : Technology & Engineering
Languages : en
Pages : 552
Book Description
The past decade has seen tremendous interest in the production and refinement of unmanned aerial vehicles, both fixed-wing, such as airplanes and rotary-wing, such as helicopters and vertical takeoff and landing vehicles. This book provides a diversified survey of research and development on small and miniature unmanned aerial vehicles of both fixed and rotary wing designs. From historical background to proposed new applications, this is the most comprehensive reference yet.
Robot Operating System (ROS)
Author: Anis Koubaa
Publisher: Springer
ISBN: 3319549278
Category : Technology & Engineering
Languages : en
Pages : 652
Book Description
This second volume is a continuation of the successful first volume of this Springer book, and as well as addressing broader topics it puts a particular focus on unmanned aerial vehicles (UAVs) with Robot Operating System (ROS). Consisting of three types of chapters: tutorials, cases studies, and research papers, it provides comprehensive additional material on ROS and the aspects of developing robotics systems, algorithms, frameworks, and applications with ROS. ROS is being increasingly integrated in almost all kinds of robots and is becoming the de-facto standard for developing applications and systems for robotics. Although the research community is actively developing applications with ROS and extending its features, amount of literature references is not representative of the huge amount of work being done. The book includes 19 chapters organized into six parts: Part 1 presents the control of UAVs with ROS, while in Part 2, three chapters deal with control of mobile robots. Part 3 provides recent work toward integrating ROS with Internet, cloud and distributed systems. Part 4 offers five case studies of service robots and field experiments. Part 5 presents signal-processing tools for perception and sensing, and lastly, Part 6 introduces advanced simulation frameworks. The diversity of topics in the book makes it a unique and valuable reference resource for ROS users, researchers, learners and developers.
Publisher: Springer
ISBN: 3319549278
Category : Technology & Engineering
Languages : en
Pages : 652
Book Description
This second volume is a continuation of the successful first volume of this Springer book, and as well as addressing broader topics it puts a particular focus on unmanned aerial vehicles (UAVs) with Robot Operating System (ROS). Consisting of three types of chapters: tutorials, cases studies, and research papers, it provides comprehensive additional material on ROS and the aspects of developing robotics systems, algorithms, frameworks, and applications with ROS. ROS is being increasingly integrated in almost all kinds of robots and is becoming the de-facto standard for developing applications and systems for robotics. Although the research community is actively developing applications with ROS and extending its features, amount of literature references is not representative of the huge amount of work being done. The book includes 19 chapters organized into six parts: Part 1 presents the control of UAVs with ROS, while in Part 2, three chapters deal with control of mobile robots. Part 3 provides recent work toward integrating ROS with Internet, cloud and distributed systems. Part 4 offers five case studies of service robots and field experiments. Part 5 presents signal-processing tools for perception and sensing, and lastly, Part 6 introduces advanced simulation frameworks. The diversity of topics in the book makes it a unique and valuable reference resource for ROS users, researchers, learners and developers.
Informatics in Control, Automation and Robotics
Author: Juan Andrade Cetto
Publisher: Springer Science & Business Media
ISBN: 3642002714
Category : Computers
Languages : en
Pages : 284
Book Description
The present book includes a set of selected papers from the Fifth International Conf- ence on Informatics in Control Automation and Robotics (ICINCO 2008), held in Funchal, Madeira - Portugal, from 11 to 15 May 2008. The conference was organized in three simultaneous tracks: Intelligent Control Systems and Optimization, Robotics and Automation, and Systems Modeling, Signal Processing and Control. The book is based on the same structure. ICINCO 2008 received 392 paper submissions, from more than 50 different co- tries in all continents. From these, after a blind review process, only 33 where - cepted as full papers, of which 18 were selected for inclusion in this book, based on the classifications provided by the Program Committee. The selected papers reflect the interdisciplinary nature of the conference. The diversity of topics is an important feature of this conference, enabling an overall perception of several important sci- tific and technological trends. These high quality standards will be maintained and reinforced at ICINCO 2009, to be held in Milan, Italy, and in future editions of this conference.
Publisher: Springer Science & Business Media
ISBN: 3642002714
Category : Computers
Languages : en
Pages : 284
Book Description
The present book includes a set of selected papers from the Fifth International Conf- ence on Informatics in Control Automation and Robotics (ICINCO 2008), held in Funchal, Madeira - Portugal, from 11 to 15 May 2008. The conference was organized in three simultaneous tracks: Intelligent Control Systems and Optimization, Robotics and Automation, and Systems Modeling, Signal Processing and Control. The book is based on the same structure. ICINCO 2008 received 392 paper submissions, from more than 50 different co- tries in all continents. From these, after a blind review process, only 33 where - cepted as full papers, of which 18 were selected for inclusion in this book, based on the classifications provided by the Program Committee. The selected papers reflect the interdisciplinary nature of the conference. The diversity of topics is an important feature of this conference, enabling an overall perception of several important sci- tific and technological trends. These high quality standards will be maintained and reinforced at ICINCO 2009, to be held in Milan, Italy, and in future editions of this conference.