An Electrochemical Study of Well-defined Nafion Coated Platinum and Platinum-bimetallic Electrodes

An Electrochemical Study of Well-defined Nafion Coated Platinum and Platinum-bimetallic Electrodes PDF Author: Mujib Ahmed
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
In this investigation, cyclic voltammetry (CV), X-ray photoelectron spectroscopy (XPS) and rotating disc electrode (RDE) measurements of the oxygen reduction reaction (ORR) have been used to explore the complex three-phase Nafion-platinum-electrolyte interface. This interface is at the heart of the functioning membrane electrode assembly (MEA) of a fuel cell. CV was primarily used to analyse ultra-thin Nafion films, deposited (without contamination) onto various flat and stepped platinum and platinum bimetallic single crystal electrodes. For Pt{111}, XPS measurements were also used to determine Nafion surface layer thickness and to obtain surface chemical composition. CV results have shown that Nafion is a probe of adsorbed OH on platinum electrodes and for stepped surfaces, unusual structural sensitivity of Nafion-induced voltammetric peaks, ascribable to Nafion interactions with step sites, is observed as a function of average terrace width. Voltammetric results for palladium adlayers (up to two monolayers) adsorbed on Nafion coated Pt{111} and {100} in aqueous 0.1M HClO4, show the first layer palladium hydrogen underpotential deposition (HUPD) peak being much sharper and intense as compared to Nafion free surfaces. A similar phenomenon was found for platinum-palladium surface alloys in that Nafion adsorption would produce sharper, palladium HUPD peaks. This behaviour is ascribed to stronger specific adsorption of the Nafion sulphonate groups with palladium compared to platinum. It was interesting to note that for bismuth adlayers adsorbed onto Nafion coated Pt{111} and {100}, attenuation of HUPD features was identical whether or not Nafion was adsorbed but the Bi-OH redox features for Nafion coated surfaces exhibited marked differences, again ascribable to competitive adsorption of sulphonate and OH. Using RDE, it was found that the ORR for various Nafion coated Pt{hkl} electrodes was inhibited compared to Nafion free electrodes. The electrooxidation of formic acid on palladium modified, Nafion coated Pt{111}, in aqueous 0.1M HClO4, was found not to be affected by the presence of Nafion. However methanol electrooxidation was inhibited on palladium modified, Nafion coated Pt{111}. Finally a number of actual fuel cell electrocatalysts, provided by Johnson Matthey were characterised using CV. The {111} and {100} surface site densities were quantified using bismuth and germanium as surface probes. Comparisons between Nafion coated electrocatalysts and Nafion free electrocatalysts are also reported. It was found that only very marginal differences between the CV responses of both types of catalyst are recorded (in contrast to the single crystal data).

An Electrochemical Study of Well-defined Nafion Coated Platinum and Platinum-bimetallic Electrodes

An Electrochemical Study of Well-defined Nafion Coated Platinum and Platinum-bimetallic Electrodes PDF Author: Mujib Ahmed
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
In this investigation, cyclic voltammetry (CV), X-ray photoelectron spectroscopy (XPS) and rotating disc electrode (RDE) measurements of the oxygen reduction reaction (ORR) have been used to explore the complex three-phase Nafion-platinum-electrolyte interface. This interface is at the heart of the functioning membrane electrode assembly (MEA) of a fuel cell. CV was primarily used to analyse ultra-thin Nafion films, deposited (without contamination) onto various flat and stepped platinum and platinum bimetallic single crystal electrodes. For Pt{111}, XPS measurements were also used to determine Nafion surface layer thickness and to obtain surface chemical composition. CV results have shown that Nafion is a probe of adsorbed OH on platinum electrodes and for stepped surfaces, unusual structural sensitivity of Nafion-induced voltammetric peaks, ascribable to Nafion interactions with step sites, is observed as a function of average terrace width. Voltammetric results for palladium adlayers (up to two monolayers) adsorbed on Nafion coated Pt{111} and {100} in aqueous 0.1M HClO4, show the first layer palladium hydrogen underpotential deposition (HUPD) peak being much sharper and intense as compared to Nafion free surfaces. A similar phenomenon was found for platinum-palladium surface alloys in that Nafion adsorption would produce sharper, palladium HUPD peaks. This behaviour is ascribed to stronger specific adsorption of the Nafion sulphonate groups with palladium compared to platinum. It was interesting to note that for bismuth adlayers adsorbed onto Nafion coated Pt{111} and {100}, attenuation of HUPD features was identical whether or not Nafion was adsorbed but the Bi-OH redox features for Nafion coated surfaces exhibited marked differences, again ascribable to competitive adsorption of sulphonate and OH. Using RDE, it was found that the ORR for various Nafion coated Pt{hkl} electrodes was inhibited compared to Nafion free electrodes. The electrooxidation of formic acid on palladium modified, Nafion coated Pt{111}, in aqueous 0.1M HClO4, was found not to be affected by the presence of Nafion. However methanol electrooxidation was inhibited on palladium modified, Nafion coated Pt{111}. Finally a number of actual fuel cell electrocatalysts, provided by Johnson Matthey were characterised using CV. The {111} and {100} surface site densities were quantified using bismuth and germanium as surface probes. Comparisons between Nafion coated electrocatalysts and Nafion free electrocatalysts are also reported. It was found that only very marginal differences between the CV responses of both types of catalyst are recorded (in contrast to the single crystal data).

Electrochemical Studies of Metal Deposition and Surface Chirality at Well-defined Platinum Single Crystal Electrodes

Electrochemical Studies of Metal Deposition and Surface Chirality at Well-defined Platinum Single Crystal Electrodes PDF Author: Omar Abdullah Hazzazi
Publisher:
ISBN:
Category : Catalysis
Languages : en
Pages : 566

Get Book Here

Book Description


Electrochemical Studies of Two-dimensional Processes at Well-defined Platinum Single Crystal Electrodes

Electrochemical Studies of Two-dimensional Processes at Well-defined Platinum Single Crystal Electrodes PDF Author: Sylvie Morin
Publisher:
ISBN:
Category : Chemisorption
Languages : en
Pages : 460

Get Book Here

Book Description


Electrochemical Studies of Two-dimensional Processes at Well-defined Platinum Single Crystal Electrodes

Electrochemical Studies of Two-dimensional Processes at Well-defined Platinum Single Crystal Electrodes PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Electrochemical Studies of the Oxygen Reduction Reaction

Electrochemical Studies of the Oxygen Reduction Reaction PDF Author: Ashley Brew
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Water on Well-defined Platinum Surfaces

Water on Well-defined Platinum Surfaces PDF Author: Maria Johanna Theresia Cornelia Niet
Publisher:
ISBN:
Category :
Languages : en
Pages : 177

Get Book Here

Book Description


Metals Abstracts

Metals Abstracts PDF Author:
Publisher:
ISBN:
Category : Metallurgy
Languages : en
Pages : 810

Get Book Here

Book Description


Handbook of Nanoelectrochemistry

Handbook of Nanoelectrochemistry PDF Author: Mahmood Aliofkhazraei
Publisher: Springer
ISBN: 9783319152653
Category : Science
Languages : en
Pages : 0

Get Book Here

Book Description
This edited book is devoted to different electrochemical aspects of nano materials. This comprehensive reference text is basically divided in 3 parts: electrochemical synthesis routes for nanosized materials, electrochemical properties of nano materials and electrochemical characterization methods for nanostructures. The Handbook is a reference work to chemists and materials scientists interested in the nano aspects of electrochemistry. The chapters are written by a number of international experts in the field and the content will assist members of both electrochemical and materials communities to keep abreast of developments in the field.

Electrochemical Dictionary

Electrochemical Dictionary PDF Author: Allen J. Bard
Publisher: Springer Science & Business Media
ISBN: 3642295517
Category : Science
Languages : en
Pages : 994

Get Book Here

Book Description
This second edition of the highly successful dictionary offers more than 300 new or revised terms. A distinguished panel of electrochemists provides up-to-date, broad and authoritative coverage of 3000 terms most used in electrochemistry and energy research as well as related fields, including relevant areas of physics and engineering. Each entry supplies a clear and precise explanation of the term and provides references to the most useful reviews, books and original papers to enable readers to pursue a deeper understanding if so desired. Almost 600 figures and illustrations elaborate the textual definitions. The “Electrochemical Dictionary” also contains biographical entries of people who have substantially contributed to electrochemistry. From reviews of the first edition: ‘the creators of the Electrochemical Dictionary have done a laudable job to ensure that each definition included here has been defined in precise terms in a clear and readily accessible style’ (The Electric Review) ‘It is a must for any scientific library, and a personal purchase can be strongly suggested to anybody interested in electrochemistry’ (Journal of Solid State Electrochemistry) ‘The text is readable, intelligible and very well written’ (Reference Reviews)

Nanoporous Gold

Nanoporous Gold PDF Author: Arne Wittstock
Publisher: Royal Society of Chemistry
ISBN: 184973528X
Category : Technology & Engineering
Languages : en
Pages : 265

Get Book Here

Book Description
High-surface-area materials have recently attracted significant interest due to potential applications in various fields such as electrochemistry and catalysis, gas-phase catalysis, optics, sensors and actuators, energy harvesting and storage. In contrast to classical materials the properties of high-surface-area materials are no longer determined by their bulk, but by their nanoscale architecture. Nanoporous gold (np-Au) represents the fascinating class of mesoporous metals that have been intensively investigated in recent years. The current interest and the increasing number of scientific publications show that np-Au by itself is an outstanding nano-material that justifies a book devoted to all aspects of its properties and applications. The resulting publication is a discussion of this unique nano-material and is an accessible and comprehensive introduction to the field. The book provides a broad, multi-disciplinary platform to learn more about the properties of nanoporous gold from an inter-disciplinary perspective. It starts with an introduction and overview of state-of-the-art applications and techniques characterizing this material and its applications. It then covers the progress in research within the last years. The chapters are in-depth overviews written by the world's leading scientists in the particular field. Each chapter covers one technique or application so that the reader can easily target their favoured topic and will get the latest and state-of-the-art information in the field.