An Algebraic Approach to Geometry

An Algebraic Approach to Geometry PDF Author: Francis Borceux
Publisher: Springer Science & Business Media
ISBN: 3319017330
Category : Mathematics
Languages : en
Pages : 440

Get Book Here

Book Description
This is a unified treatment of the various algebraic approaches to geometric spaces. The study of algebraic curves in the complex projective plane is the natural link between linear geometry at an undergraduate level and algebraic geometry at a graduate level, and it is also an important topic in geometric applications, such as cryptography. 380 years ago, the work of Fermat and Descartes led us to study geometric problems using coordinates and equations. Today, this is the most popular way of handling geometrical problems. Linear algebra provides an efficient tool for studying all the first degree (lines, planes) and second degree (ellipses, hyperboloids) geometric figures, in the affine, the Euclidean, the Hermitian and the projective contexts. But recent applications of mathematics, like cryptography, need these notions not only in real or complex cases, but also in more general settings, like in spaces constructed on finite fields. And of course, why not also turn our attention to geometric figures of higher degrees? Besides all the linear aspects of geometry in their most general setting, this book also describes useful algebraic tools for studying curves of arbitrary degree and investigates results as advanced as the Bezout theorem, the Cramer paradox, topological group of a cubic, rational curves etc. Hence the book is of interest for all those who have to teach or study linear geometry: affine, Euclidean, Hermitian, projective; it is also of great interest to those who do not want to restrict themselves to the undergraduate level of geometric figures of degree one or two.

An Algebraic Approach to Geometry

An Algebraic Approach to Geometry PDF Author: Francis Borceux
Publisher: Springer Science & Business Media
ISBN: 3319017330
Category : Mathematics
Languages : en
Pages : 440

Get Book Here

Book Description
This is a unified treatment of the various algebraic approaches to geometric spaces. The study of algebraic curves in the complex projective plane is the natural link between linear geometry at an undergraduate level and algebraic geometry at a graduate level, and it is also an important topic in geometric applications, such as cryptography. 380 years ago, the work of Fermat and Descartes led us to study geometric problems using coordinates and equations. Today, this is the most popular way of handling geometrical problems. Linear algebra provides an efficient tool for studying all the first degree (lines, planes) and second degree (ellipses, hyperboloids) geometric figures, in the affine, the Euclidean, the Hermitian and the projective contexts. But recent applications of mathematics, like cryptography, need these notions not only in real or complex cases, but also in more general settings, like in spaces constructed on finite fields. And of course, why not also turn our attention to geometric figures of higher degrees? Besides all the linear aspects of geometry in their most general setting, this book also describes useful algebraic tools for studying curves of arbitrary degree and investigates results as advanced as the Bezout theorem, the Cramer paradox, topological group of a cubic, rational curves etc. Hence the book is of interest for all those who have to teach or study linear geometry: affine, Euclidean, Hermitian, projective; it is also of great interest to those who do not want to restrict themselves to the undergraduate level of geometric figures of degree one or two.

Introduction to Algebraic Geometry

Introduction to Algebraic Geometry PDF Author: Steven Dale Cutkosky
Publisher: American Mathematical Soc.
ISBN: 1470435187
Category : Mathematics
Languages : en
Pages : 498

Get Book Here

Book Description
This book presents a readable and accessible introductory course in algebraic geometry, with most of the fundamental classical results presented with complete proofs. An emphasis is placed on developing connections between geometric and algebraic aspects of the theory. Differences between the theory in characteristic and positive characteristic are emphasized. The basic tools of classical and modern algebraic geometry are introduced, including varieties, schemes, singularities, sheaves, sheaf cohomology, and intersection theory. Basic classical results on curves and surfaces are proved. More advanced topics such as ramification theory, Zariski's main theorem, and Bertini's theorems for general linear systems are presented, with proofs, in the final chapters. With more than 200 exercises, the book is an excellent resource for teaching and learning introductory algebraic geometry.

Algebraic Geometry

Algebraic Geometry PDF Author: Thomas A. Garrity
Publisher: American Mathematical Soc.
ISBN: 0821893963
Category : Mathematics
Languages : en
Pages : 363

Get Book Here

Book Description
Algebraic Geometry has been at the center of much of mathematics for hundreds of years. It is not an easy field to break into, despite its humble beginnings in the study of circles, ellipses, hyperbolas, and parabolas. This text consists of a series of ex

Algebraic Geometry and Commutative Algebra

Algebraic Geometry and Commutative Algebra PDF Author: Siegfried Bosch
Publisher: Springer Nature
ISBN: 1447175239
Category : Mathematics
Languages : en
Pages : 504

Get Book Here

Book Description
Algebraic Geometry is a fascinating branch of Mathematics that combines methods from both Algebra and Geometry. It transcends the limited scope of pure Algebra by means of geometric construction principles. Putting forward this idea, Grothendieck revolutionized Algebraic Geometry in the late 1950s by inventing schemes. Schemes now also play an important role in Algebraic Number Theory, a field that used to be far away from Geometry. The new point of view paved the way for spectacular progress, such as the proof of Fermat's Last Theorem by Wiles and Taylor. This book explains the scheme-theoretic approach to Algebraic Geometry for non-experts, while more advanced readers can use it to broaden their view on the subject. A separate part presents the necessary prerequisites from Commutative Algebra, thereby providing an accessible and self-contained introduction to advanced Algebraic Geometry. Every chapter of the book is preceded by a motivating introduction with an informal discussion of its contents and background. Typical examples, and an abundance of exercises illustrate each section. Therefore the book is an excellent companion for self-studying or for complementing skills that have already been acquired. It can just as well serve as a convenient source for (reading) course material and, in any case, as supplementary literature. The present edition is a critical revision of the earlier text.

Introduction to Algebraic Geometry

Introduction to Algebraic Geometry PDF Author: Serge Lang
Publisher: Courier Dover Publications
ISBN: 048683980X
Category : Mathematics
Languages : en
Pages : 273

Get Book Here

Book Description
Author Serge Lang defines algebraic geometry as the study of systems of algebraic equations in several variables and of the structure that one can give to the solutions of such equations. The study can be carried out in four ways: analytical, topological, algebraico-geometric, and arithmetic. This volume offers a rapid, concise, and self-contained introductory approach to the algebraic aspects of the third method, the algebraico-geometric. The treatment assumes only familiarity with elementary algebra up to the level of Galois theory. Starting with an opening chapter on the general theory of places, the author advances to examinations of algebraic varieties, the absolute theory of varieties, and products, projections, and correspondences. Subsequent chapters explore normal varieties, divisors and linear systems, differential forms, the theory of simple points, and algebraic groups, concluding with a focus on the Riemann-Roch theorem. All the theorems of a general nature related to the foundations of the theory of algebraic groups are featured.

Geometric Algebra for Computer Science

Geometric Algebra for Computer Science PDF Author: Leo Dorst
Publisher: Elsevier
ISBN: 0080553109
Category : Juvenile Nonfiction
Languages : en
Pages : 664

Get Book Here

Book Description
Until recently, almost all of the interactions between objects in virtual 3D worlds have been based on calculations performed using linear algebra. Linear algebra relies heavily on coordinates, however, which can make many geometric programming tasks very specific and complex-often a lot of effort is required to bring about even modest performance enhancements. Although linear algebra is an efficient way to specify low-level computations, it is not a suitable high-level language for geometric programming. Geometric Algebra for Computer Science presents a compelling alternative to the limitations of linear algebra. Geometric algebra, or GA, is a compact, time-effective, and performance-enhancing way to represent the geometry of 3D objects in computer programs. In this book you will find an introduction to GA that will give you a strong grasp of its relationship to linear algebra and its significance for your work. You will learn how to use GA to represent objects and perform geometric operations on them. And you will begin mastering proven techniques for making GA an integral part of your applications in a way that simplifies your code without slowing it down. * The first book on Geometric Algebra for programmers in computer graphics and entertainment computing * Written by leaders in the field providing essential information on this new technique for 3D graphics * This full colour book includes a website with GAViewer, a program to experiment with GA

Algebraic Geometry

Algebraic Geometry PDF Author: Robin Hartshorne
Publisher: Springer Science & Business Media
ISBN: 1475738498
Category : Mathematics
Languages : en
Pages : 511

Get Book Here

Book Description
An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.

Rational Algebraic Curves

Rational Algebraic Curves PDF Author: J. Rafael Sendra
Publisher: Springer Science & Business Media
ISBN: 3540737251
Category : Mathematics
Languages : en
Pages : 273

Get Book Here

Book Description
The central problem considered in this introduction for graduate students is the determination of rational parametrizability of an algebraic curve and, in the positive case, the computation of a good rational parametrization. This amounts to determining the genus of a curve: its complete singularity structure, computing regular points of the curve in small coordinate fields, and constructing linear systems of curves with prescribed intersection multiplicities. The book discusses various optimality criteria for rational parametrizations of algebraic curves.

Classical Algebraic Geometry

Classical Algebraic Geometry PDF Author: Igor V. Dolgachev
Publisher: Cambridge University Press
ISBN: 1139560786
Category : Mathematics
Languages : en
Pages : 653

Get Book Here

Book Description
Algebraic geometry has benefited enormously from the powerful general machinery developed in the latter half of the twentieth century. The cost has been that much of the research of previous generations is in a language unintelligible to modern workers, in particular, the rich legacy of classical algebraic geometry, such as plane algebraic curves of low degree, special algebraic surfaces, theta functions, Cremona transformations, the theory of apolarity and the geometry of lines in projective spaces. The author's contemporary approach makes this legacy accessible to modern algebraic geometers and to others who are interested in applying classical results. The vast bibliography of over 600 references is complemented by an array of exercises that extend or exemplify results given in the book.

Geometric Trilogy

Geometric Trilogy PDF Author: Francis Borceux
Publisher: Springer
ISBN: 9783319018041
Category : Mathematics
Languages : en
Pages : 1350

Get Book Here

Book Description
The Trilogy intends to introduce the reader to the multiple complementary aspects of geometry, paying attention to the historical birth and growth of the ideas and results, and concluding with a contemporary presentation of the various topics considered. Three essentially independent volumes approach geometry via the axiomatic, the algebraic and the differential points of view. The “ruler and compass” approach to geometry, developed by the Greek mathematicians of the Antiquity, remained the only reference in Geometry – and even in Mathematics -- for more than two millenniums. The fruitless efforts for solving the so-called “classical problems” of Greek geometry lead eventually to a deeper reflection on the axiomatic bases of geometry, and in particular to the discovery of projective geometry and non-Euclidean geometries. During the Renaissance, mathematicians start liberating themselves from the “ruler and compass” dogma and use algebraic techniques to investigate geometric situations. The nineteenth century, with the birth of linear algebra and the theory of polynomials, opens new doors and in particular, the fascinating world of algebraic curves. The introduction of differential calculus during the eighteenth century allows widening considerably the range of curves and surfaces considered. The notion of curvature –under multiple forms -- imposes itself as an essential tool for studying the properties of curves and surfaces. And a keen study of some geometrical properties of surfaces gives rise to the theory of algebraic topology. This trilogy is of interest to all those who have to teach or study geometry and need to have a good global overview of the numerous facets of this fascinating topic. It provides both the intuitive and the technical ingredients needed to find one’s way through Euclidean, non-Euclidean, projective, algebraic or differential geometry at a high level.