Author: Robert Brasseur
Publisher: CRC Press
ISBN: 1000697665
Category : Medical
Languages : en
Pages : 424
Book Description
First published in 1990, the goal of these two volumes is to help fill the gap between theory and experiment in membrane science. Those involved with biochemistry, biophysics, pharmacology, and biology will find these volumes interesting and informative.
AMolecular Description of Biological Membrane Components by Computer Aided Conformational Analysis
Author: Robert Brasseur
Publisher: CRC Press
ISBN: 1000697665
Category : Medical
Languages : en
Pages : 424
Book Description
First published in 1990, the goal of these two volumes is to help fill the gap between theory and experiment in membrane science. Those involved with biochemistry, biophysics, pharmacology, and biology will find these volumes interesting and informative.
Publisher: CRC Press
ISBN: 1000697665
Category : Medical
Languages : en
Pages : 424
Book Description
First published in 1990, the goal of these two volumes is to help fill the gap between theory and experiment in membrane science. Those involved with biochemistry, biophysics, pharmacology, and biology will find these volumes interesting and informative.
Molecular Description of Biological Membrane Components by Computer Aided Conformational Analysis
Author: Robert Brasseur
Publisher: CRC Press
ISBN: 9780849363764
Category : Medical
Languages : en
Pages : 236
Book Description
The goal of these two volumes is to help fill the gap between theory and experiment in membrane science. This is the only work available today which covers the domain of computer-aided conformational analyses of membranes. Written in a detailed, yet comprehensive manner, this book uses the semi-empirical approach as a way to give a molecular description of the membrane structure in organized systems. This interesting work establishes the validity and quality of the prediction by making a permanent comparison with the experimental data. This reference aims to use this comparison to open a new avenue in the molecular description of the biological membrane. Those involved with biochemistry, biophysics, pharmacology, and biology will find these volumes interesting and informative.
Publisher: CRC Press
ISBN: 9780849363764
Category : Medical
Languages : en
Pages : 236
Book Description
The goal of these two volumes is to help fill the gap between theory and experiment in membrane science. This is the only work available today which covers the domain of computer-aided conformational analyses of membranes. Written in a detailed, yet comprehensive manner, this book uses the semi-empirical approach as a way to give a molecular description of the membrane structure in organized systems. This interesting work establishes the validity and quality of the prediction by making a permanent comparison with the experimental data. This reference aims to use this comparison to open a new avenue in the molecular description of the biological membrane. Those involved with biochemistry, biophysics, pharmacology, and biology will find these volumes interesting and informative.
Molecular Description of Biological Membrane Components by Computer Aided Conformational Analysis
Author: Robert Brasseur
Publisher: CRC Press
ISBN: 9780849363764
Category : Medical
Languages : en
Pages : 240
Book Description
The goal of these two volumes is to help fill the gap between theory and experiment in membrane science. This is the only work available today which covers the domain of computer-aided conformational analyses of membranes. Written in a detailed, yet comprehensive manner, this book uses the semi-empirical approach as a way to give a molecular description of the membrane structure in organized systems. This interesting work establishes the validity and quality of the prediction by making a permanent comparison with the experimental data. This reference aims to use this comparison to open a new avenue in the molecular description of the biological membrane. Those involved with biochemistry, biophysics, pharmacology, and biology will find these volumes interesting and informative.
Publisher: CRC Press
ISBN: 9780849363764
Category : Medical
Languages : en
Pages : 240
Book Description
The goal of these two volumes is to help fill the gap between theory and experiment in membrane science. This is the only work available today which covers the domain of computer-aided conformational analyses of membranes. Written in a detailed, yet comprehensive manner, this book uses the semi-empirical approach as a way to give a molecular description of the membrane structure in organized systems. This interesting work establishes the validity and quality of the prediction by making a permanent comparison with the experimental data. This reference aims to use this comparison to open a new avenue in the molecular description of the biological membrane. Those involved with biochemistry, biophysics, pharmacology, and biology will find these volumes interesting and informative.
Molecular Description of Biological Membrane Components by Computer Aided Conformational Analysis
Author: Robert Brasseur
Publisher: CRC Press
ISBN: 9780849363757
Category : Medical
Languages : en
Pages : 370
Book Description
The goal of these two volumes is to help fill the gap between theory and experiment in membrane science. This is the only work available today which covers the domain of computer-aided conformational analyses of membranes. Written in a detailed, yet comprehensive manner, this book uses the semi-empirical approach as a way to give a molecular description of the membrane structure in organized systems. This interesting work establishes the validity and quality of the prediction by making a permanent comparison with the experimental data. This reference aims to use this comparison to open a new avenue in the molecular description of the biological membrane. Those involved with biochemistry, biophysics, pharmacology, and biology will find these volumes interesting and informative.
Publisher: CRC Press
ISBN: 9780849363757
Category : Medical
Languages : en
Pages : 370
Book Description
The goal of these two volumes is to help fill the gap between theory and experiment in membrane science. This is the only work available today which covers the domain of computer-aided conformational analyses of membranes. Written in a detailed, yet comprehensive manner, this book uses the semi-empirical approach as a way to give a molecular description of the membrane structure in organized systems. This interesting work establishes the validity and quality of the prediction by making a permanent comparison with the experimental data. This reference aims to use this comparison to open a new avenue in the molecular description of the biological membrane. Those involved with biochemistry, biophysics, pharmacology, and biology will find these volumes interesting and informative.
Biological Membranes
Author: Kenneth M. Merz
Publisher: Springer Science & Business Media
ISBN: 1468485806
Category : Science
Languages : en
Pages : 596
Book Description
The interface between a living cell and the surrounding world plays a critical role in numerous complex biological processes. Sperm/egg fusion, virus/cell fusion, exocytosis, endocytosis, and ion permeation are a few examples of processes involving membranes. In recent years, powerful tools such as X-ray crystal lography, electron microscopy, nuclear magnetic resonance, and infra-red and Raman spectroscopy have been developed to characterize the structure and dy namics of biomembranes. Despite this progress, many of the factors responsible for the function of biomembranes are still not well understood. The membrane is a very complicated supramolecular liquid-crystalline structure that is largely composed of lipids, forming a bilayer, to which proteins and other biomolecules are anchored. Often, the lipid bilayer environment is pictured as a hydropho bic structureless slab providing a thermodynamic driving force to partition the amino acids of a membrane protein according to their solubility. However, much of the molecular complexity of the phospholipid bilayer environment is ignored in such a simplified view. It is likely that the atomic details of the polar head group region and the transition from the bulk water to the hydrophobic core of the membrane are important. An understanding of the factors responsible for the function of biomembranes thus requires a better characterization at the molec ular level of how proteins interact with lipid molecules, of how lipids affect protein structure and of how lipid molecules might regulate protein function.
Publisher: Springer Science & Business Media
ISBN: 1468485806
Category : Science
Languages : en
Pages : 596
Book Description
The interface between a living cell and the surrounding world plays a critical role in numerous complex biological processes. Sperm/egg fusion, virus/cell fusion, exocytosis, endocytosis, and ion permeation are a few examples of processes involving membranes. In recent years, powerful tools such as X-ray crystal lography, electron microscopy, nuclear magnetic resonance, and infra-red and Raman spectroscopy have been developed to characterize the structure and dy namics of biomembranes. Despite this progress, many of the factors responsible for the function of biomembranes are still not well understood. The membrane is a very complicated supramolecular liquid-crystalline structure that is largely composed of lipids, forming a bilayer, to which proteins and other biomolecules are anchored. Often, the lipid bilayer environment is pictured as a hydropho bic structureless slab providing a thermodynamic driving force to partition the amino acids of a membrane protein according to their solubility. However, much of the molecular complexity of the phospholipid bilayer environment is ignored in such a simplified view. It is likely that the atomic details of the polar head group region and the transition from the bulk water to the hydrophobic core of the membrane are important. An understanding of the factors responsible for the function of biomembranes thus requires a better characterization at the molec ular level of how proteins interact with lipid molecules, of how lipids affect protein structure and of how lipid molecules might regulate protein function.
Handbook of Nonmedical Applications of Liposomes
Author: Danilo D. Lasic
Publisher: CRC Press
ISBN: 1000887529
Category : Science
Languages : en
Pages : 346
Book Description
First published in 1996, liposomes have become an important model in fundamental biomembrane research, including biophysical, biochemical, and cell biological studies of membranes and cell function. They are thoroughly studied in several applications, such as drug delivery systems in medical applications and as controlled release systems, microencapsulating media, signal carriers, support matrices, and solubilizers in other applications. While medical applications have been extensively reviewed in recent literature, there is a need for easily accessible information on applications for liposomes beyond pharmacology and medicine. The Handbook of Nonmedical Applications of Liposomes fills this void. This unique new handbook series presents recent developments in the use of liposomes in many scientific disciplines, from studies on the origin of life, protein function, and vesicle shapes, to applications in cosmetics, diagnostics, ecology, bioreclamation, and the food industry. In these volumes many of the top experts contribute extensive reviews of their work.
Publisher: CRC Press
ISBN: 1000887529
Category : Science
Languages : en
Pages : 346
Book Description
First published in 1996, liposomes have become an important model in fundamental biomembrane research, including biophysical, biochemical, and cell biological studies of membranes and cell function. They are thoroughly studied in several applications, such as drug delivery systems in medical applications and as controlled release systems, microencapsulating media, signal carriers, support matrices, and solubilizers in other applications. While medical applications have been extensively reviewed in recent literature, there is a need for easily accessible information on applications for liposomes beyond pharmacology and medicine. The Handbook of Nonmedical Applications of Liposomes fills this void. This unique new handbook series presents recent developments in the use of liposomes in many scientific disciplines, from studies on the origin of life, protein function, and vesicle shapes, to applications in cosmetics, diagnostics, ecology, bioreclamation, and the food industry. In these volumes many of the top experts contribute extensive reviews of their work.
Life - As a Matter of Fat
Author: Ole G. Mouritsen
Publisher: Springer Science & Business Media
ISBN: 3540270760
Category : Science
Languages : en
Pages : 273
Book Description
Presents a multi-disciplinary perspective on the physics of life and the particular role played by lipids and the lipid-bilayer component of cell membranes. Emphasizes the physical properties of lipid membranes seen as soft and molecularly structured interfaces. By combining and synthesizing insights obtained from a variety of recent studies, an attempt is made to clarify what membrane structure is and how it can be quantitatively described. Shows how biological function mediated by membranes is controlled by lipid membrane structure and organization on length scales ranging from the size of the individual molecule, across molecular assemblies of proteins and lipid domains in the range of nanometers, to the size of whole cells. Applications of lipids in nano-technology and biomedicine are also described.
Publisher: Springer Science & Business Media
ISBN: 3540270760
Category : Science
Languages : en
Pages : 273
Book Description
Presents a multi-disciplinary perspective on the physics of life and the particular role played by lipids and the lipid-bilayer component of cell membranes. Emphasizes the physical properties of lipid membranes seen as soft and molecularly structured interfaces. By combining and synthesizing insights obtained from a variety of recent studies, an attempt is made to clarify what membrane structure is and how it can be quantitatively described. Shows how biological function mediated by membranes is controlled by lipid membrane structure and organization on length scales ranging from the size of the individual molecule, across molecular assemblies of proteins and lipid domains in the range of nanometers, to the size of whole cells. Applications of lipids in nano-technology and biomedicine are also described.
Membrane Permeability: 100 Years Since Ernest Overton
Author:
Publisher: Academic Press
ISBN: 0080585191
Category : Science
Languages : en
Pages : 443
Book Description
Membrane permeability is fundamental to all cell biology and subcellular biology. The cell exists as a closed unit. Import and export depend upon a number of sophisticated mechanisms, such as active transport, endocytosis, exocytosis, and passive diffusion. These systems are critical for the normal housekeeping physiological functions. However, access to the cell is also taken advantage of by toxic microbes (such as cholera or ptomaine) and when designing drugs. Ernest Overton, one of the pioneers in lipid membrane research, put forward the first comprehensive theory of lipid membrane structure. His most quoted paper on the osmotic properties of cells laid the foundation for the modern concepts of membrane function, most notably important in anesthesia. This book is designed to celebrate the centennial anniversary (in the first chapter) of Overton's work. Subsequent chapters present readers with up-to-date concepts of membrane structure and function and the challenge they pose for new explorations. - Provides an historical perspective of Overton's contributions to the theory of narcosis - Presents an overview of each permeability mechanism, including active transport, endocytosis, exocytosis, and passive diffusion
Publisher: Academic Press
ISBN: 0080585191
Category : Science
Languages : en
Pages : 443
Book Description
Membrane permeability is fundamental to all cell biology and subcellular biology. The cell exists as a closed unit. Import and export depend upon a number of sophisticated mechanisms, such as active transport, endocytosis, exocytosis, and passive diffusion. These systems are critical for the normal housekeeping physiological functions. However, access to the cell is also taken advantage of by toxic microbes (such as cholera or ptomaine) and when designing drugs. Ernest Overton, one of the pioneers in lipid membrane research, put forward the first comprehensive theory of lipid membrane structure. His most quoted paper on the osmotic properties of cells laid the foundation for the modern concepts of membrane function, most notably important in anesthesia. This book is designed to celebrate the centennial anniversary (in the first chapter) of Overton's work. Subsequent chapters present readers with up-to-date concepts of membrane structure and function and the challenge they pose for new explorations. - Provides an historical perspective of Overton's contributions to the theory of narcosis - Presents an overview of each permeability mechanism, including active transport, endocytosis, exocytosis, and passive diffusion
Biomembrane Structures
Author: Parvez I. Haris
Publisher: IOS Press
ISBN: 9789051993233
Category : Medical
Languages : en
Pages : 288
Book Description
Biological membranes play a significant role in a range of biological processes such as ion-transport and signal transduction. Over the years much effort has been devoted towards developing an understanding of biomembrane structure. The study of this subject is now reaching an important stage. This is because at last the full three-dimensional structure of certain membrane proteins is beginning to be resolved. In the past three-dimensional structures of membrane proteins were difficult to obtain as only two dimensional crystals were available. In recent years satisfactory crystals have been obtained and X-ray diffraction techniques have been applied. This has led to the three dimensional structures of the photosynthetic reaction centres, porins and more recently the structure of cytochrome oxidase. Of course not all membrane proteins are readily crystallisable and some are not even available in sufficient quantities to obtain the necessary crystals or to carry out biophysical experiments. In some cases e.g. the voltage-gated potassium ion channel membrane proteins their structure has been proposed mainly on the basis of molecular biology methods. This has prompted the search for alternative approaches for characterising biomembrane structure. Molecular biological studies are providing a wealth of information on a number of different membrane proteins. Combining the information derived from such studies with molecular modelling is becoming extremely useful for relating structure to function. Development of other approaches include synthesis and structure- function analysis of peptides corresponding to functionally important domains of membrane proteins. This book presents a series of Chapters discussing how a combination of molecular biological, biophysical and theoretical (molecular modelling) techniques are helping us to obtain a much clearer picture of biomembrane structure. After an introductory Chapter on the Principles of membrane Protein Structure, the book is divided into two sections; one dealing with crystallographic approaches and the other non-crystallographic approaches such as NMR, AFM, SPR and FTIR spectroscopy. Chapters dealing with the recently solved crystal structure of cytochrome oxidase and bacteriorhodopsin are presented. The book contains contributions from leading membrane scientists describing their latest studies. It provides an up to date coverage of the developments in the field of biomembranes with particular emphasis on membrane proteins.
Publisher: IOS Press
ISBN: 9789051993233
Category : Medical
Languages : en
Pages : 288
Book Description
Biological membranes play a significant role in a range of biological processes such as ion-transport and signal transduction. Over the years much effort has been devoted towards developing an understanding of biomembrane structure. The study of this subject is now reaching an important stage. This is because at last the full three-dimensional structure of certain membrane proteins is beginning to be resolved. In the past three-dimensional structures of membrane proteins were difficult to obtain as only two dimensional crystals were available. In recent years satisfactory crystals have been obtained and X-ray diffraction techniques have been applied. This has led to the three dimensional structures of the photosynthetic reaction centres, porins and more recently the structure of cytochrome oxidase. Of course not all membrane proteins are readily crystallisable and some are not even available in sufficient quantities to obtain the necessary crystals or to carry out biophysical experiments. In some cases e.g. the voltage-gated potassium ion channel membrane proteins their structure has been proposed mainly on the basis of molecular biology methods. This has prompted the search for alternative approaches for characterising biomembrane structure. Molecular biological studies are providing a wealth of information on a number of different membrane proteins. Combining the information derived from such studies with molecular modelling is becoming extremely useful for relating structure to function. Development of other approaches include synthesis and structure- function analysis of peptides corresponding to functionally important domains of membrane proteins. This book presents a series of Chapters discussing how a combination of molecular biological, biophysical and theoretical (molecular modelling) techniques are helping us to obtain a much clearer picture of biomembrane structure. After an introductory Chapter on the Principles of membrane Protein Structure, the book is divided into two sections; one dealing with crystallographic approaches and the other non-crystallographic approaches such as NMR, AFM, SPR and FTIR spectroscopy. Chapters dealing with the recently solved crystal structure of cytochrome oxidase and bacteriorhodopsin are presented. The book contains contributions from leading membrane scientists describing their latest studies. It provides an up to date coverage of the developments in the field of biomembranes with particular emphasis on membrane proteins.
The Biophysics of Cell Membranes
Author: Richard M. Epand
Publisher: Springer
ISBN: 9811062447
Category : Science
Languages : en
Pages : 224
Book Description
This volume focuses on the modulation of biological membranes by specific biophysical properties. The readers are introduced to emerging biophysical approaches that mimick specific states (like membrane lipid asymmetry, membrane curvature, lipid flip-flop, lipid phase separation) that are relevant to the functioning of biological membranes. The first chapter describes innovative methods to mimic the prevailing asymmetry in biological membranes by forming asymmetrical membranes made of monolayers with different compositions. One of the chapters illustrates how physical parameters, like curvature and elasticity, can affect and modulate the interactions between lipids and proteins. This volume also describes the sensitivity of certain ion channels to mechanical forces and it presents an analysis of how cell shape is determined by both the cytoskeleton and the lipid domains in the membrane. The last chapter provides evidence that liposomes can be used as a minimal cellular model to reconstitute processes related to the origin of life. Each topic covered in this volume is presented by leading experts in the field who are able to present clear, authoritative and up-to-date reviews. The novelty of the methods proposed and their potential for a deeper molecular description of membrane functioning are particularly relevant experts in the areas of biochemistry, biophysics and cell biology, while also presenting clear and thorough introductions, making the material suitable for students in these fields as well.
Publisher: Springer
ISBN: 9811062447
Category : Science
Languages : en
Pages : 224
Book Description
This volume focuses on the modulation of biological membranes by specific biophysical properties. The readers are introduced to emerging biophysical approaches that mimick specific states (like membrane lipid asymmetry, membrane curvature, lipid flip-flop, lipid phase separation) that are relevant to the functioning of biological membranes. The first chapter describes innovative methods to mimic the prevailing asymmetry in biological membranes by forming asymmetrical membranes made of monolayers with different compositions. One of the chapters illustrates how physical parameters, like curvature and elasticity, can affect and modulate the interactions between lipids and proteins. This volume also describes the sensitivity of certain ion channels to mechanical forces and it presents an analysis of how cell shape is determined by both the cytoskeleton and the lipid domains in the membrane. The last chapter provides evidence that liposomes can be used as a minimal cellular model to reconstitute processes related to the origin of life. Each topic covered in this volume is presented by leading experts in the field who are able to present clear, authoritative and up-to-date reviews. The novelty of the methods proposed and their potential for a deeper molecular description of membrane functioning are particularly relevant experts in the areas of biochemistry, biophysics and cell biology, while also presenting clear and thorough introductions, making the material suitable for students in these fields as well.