Amenable Banach Algebras

Amenable Banach Algebras PDF Author: Volker Runde
Publisher: Springer Nature
ISBN: 1071603515
Category : Mathematics
Languages : en
Pages : 468

Get Book Here

Book Description
This volume provides readers with a detailed introduction to the amenability of Banach algebras and locally compact groups. By encompassing important foundational material, contemporary research, and recent advancements, this monograph offers a state-of-the-art reference. It will appeal to anyone interested in questions of amenability, including those familiar with the author’s previous volume Lectures on Amenability. Cornerstone topics are covered first: namely, the theory of amenability, its historical context, and key properties of amenable groups. This introduction leads to the amenability of Banach algebras, which is the main focus of the book. Dual Banach algebras are given an in-depth exploration, as are Banach spaces, Banach homological algebra, and more. By covering amenability’s many applications, the author offers a simultaneously expansive and detailed treatment. Additionally, there are numerous exercises and notes at the end of every chapter that further elaborate on the chapter’s contents. Because it covers both the basics and cutting edge research, Amenable Banach Algebras will be indispensable to both graduate students and researchers working in functional analysis, harmonic analysis, topological groups, and Banach algebras. Instructors seeking to design an advanced course around this subject will appreciate the student-friendly elements; a prerequisite of functional analysis, abstract harmonic analysis, and Banach algebra theory is assumed.

Amenable Banach Algebras

Amenable Banach Algebras PDF Author: Volker Runde
Publisher: Springer Nature
ISBN: 1071603515
Category : Mathematics
Languages : en
Pages : 468

Get Book Here

Book Description
This volume provides readers with a detailed introduction to the amenability of Banach algebras and locally compact groups. By encompassing important foundational material, contemporary research, and recent advancements, this monograph offers a state-of-the-art reference. It will appeal to anyone interested in questions of amenability, including those familiar with the author’s previous volume Lectures on Amenability. Cornerstone topics are covered first: namely, the theory of amenability, its historical context, and key properties of amenable groups. This introduction leads to the amenability of Banach algebras, which is the main focus of the book. Dual Banach algebras are given an in-depth exploration, as are Banach spaces, Banach homological algebra, and more. By covering amenability’s many applications, the author offers a simultaneously expansive and detailed treatment. Additionally, there are numerous exercises and notes at the end of every chapter that further elaborate on the chapter’s contents. Because it covers both the basics and cutting edge research, Amenable Banach Algebras will be indispensable to both graduate students and researchers working in functional analysis, harmonic analysis, topological groups, and Banach algebras. Instructors seeking to design an advanced course around this subject will appreciate the student-friendly elements; a prerequisite of functional analysis, abstract harmonic analysis, and Banach algebra theory is assumed.

Lectures on Amenability

Lectures on Amenability PDF Author: Volker Runde
Publisher: Springer Science & Business Media
ISBN: 9783540428527
Category : Mathematics
Languages : en
Pages : 316

Get Book Here

Book Description
The notion of amenability has its origins in the beginnings of modern measure theory: Does a finitely additive set function exist which is invariant under a certain group action? Since the 1940s, amenability has become an important concept in abstract harmonic analysis (or rather, more generally, in the theory of semitopological semigroups). In 1972, B.E. Johnson showed that the amenability of a locally compact group G can be characterized in terms of the Hochschild cohomology of its group algebra L^1(G): this initiated the theory of amenable Banach algebras. Since then, amenability has penetrated other branches of mathematics, such as von Neumann algebras, operator spaces, and even differential geometry. Lectures on Amenability introduces second year graduate students to this fascinating area of modern mathematics and leads them to a level from where they can go on to read original papers on the subject. Numerous exercises are interspersed in the text.

An Introduction to the Classification of Amenable C*-algebras

An Introduction to the Classification of Amenable C*-algebras PDF Author: Huaxin Lin
Publisher: World Scientific
ISBN: 9789812799883
Category : Mathematics
Languages : en
Pages : 336

Get Book Here

Book Description
The theory and applications of C Oeu -algebras are related to fields ranging from operator theory, group representations and quantum mechanics, to non-commutative geometry and dynamical systems. By Gelfand transformation, the theory of C Oeu -algebras is also regarded as non-commutative topology. About a decade ago, George A. Elliott initiated the program of classification of C Oeu -algebras (up to isomorphism) by their K -theoretical data. It started with the classification of AT -algebras with real rank zero. Since then great efforts have been made to classify amenable C Oeu -algebras, a class of C Oeu -algebras that arises most naturally. For example, a large class of simple amenable C Oeu -algebras is discovered to be classifiable. The application of these results to dynamical systems has been established. This book introduces the recent development of the theory of the classification of amenable C Oeu -algebras OCo the first such attempt. The first three chapters present the basics of the theory of C Oeu -algebras which are particularly important to the theory of the classification of amenable C Oeu -algebras. Chapter 4 otters the classification of the so-called AT -algebras of real rank zero. The first four chapters are self-contained, and can serve as a text for a graduate course on C Oeu -algebras. The last two chapters contain more advanced material. In particular, they deal with the classification theorem for simple AH -algebras with real rank zero, the work of Elliott and Gong. The book contains many new proofs and some original results related to the classification of amenable C Oeu -algebras. Besides being as an introduction to the theory of the classification of amenable C Oeu -algebras, it is a comprehensive reference for those more familiar with the subject. Sample Chapter(s). Chapter 1.1: Banach algebras (260 KB). Chapter 1.2: C*-algebras (210 KB). Chapter 1.3: Commutative C*-algebras (212 KB). Chapter 1.4: Positive cones (207 KB). Chapter 1.5: Approximate identities, hereditary C*-subalgebras and quotients (230 KB). Chapter 1.6: Positive linear functionals and a Gelfand-Naimark theorem (235 KB). Chapter 1.7: Von Neumann algebras (234 KB). Chapter 1.8: Enveloping von Neumann algebras and the spectral theorem (217 KB). Chapter 1.9: Examples of C*-algebras (270 KB). Chapter 1.10: Inductive limits of C*-algebras (252 KB). Chapter 1.11: Exercises (220 KB). Chapter 1.12: Addenda (168 KB). Contents: The Basics of C Oeu -Algebras; Amenable C Oeu -Algebras and K -Theory; AF- Algebras and Ranks of C Oeu -Algebras; Classification of Simple AT -Algebras; C Oeu -Algebra Extensions; Classification of Simple Amenable C Oeu -Algebras. Readership: Researchers and graduate students in operator algebras."

Cohomology in Banach Algebras

Cohomology in Banach Algebras PDF Author: Barry Edward Johnson
Publisher: American Mathematical Soc.
ISBN: 0821818279
Category : Mathematics
Languages : en
Pages : 104

Get Book Here

Book Description
Let [Fraktur capital]A be a Banach algebra, [Fraktur capital]X a two-sided Banach [Fraktur capital] A-module, and define the cohomology groups [italic]H[italic superscript]n([Fraktur capital]A, [Fraktur capital]X) from the complex of bounded cochains in exact analogy to the classical (algebraic) case. This article gives an introduction to several aspects of the resulting theory.

Amenable Banach Algebras

Amenable Banach Algebras PDF Author: Jean-Paul Pier
Publisher: Longman Publishing Group
ISBN:
Category : Banach algebras
Languages : en
Pages : 180

Get Book Here

Book Description


Introduction to Banach Algebras, Operators, and Harmonic Analysis

Introduction to Banach Algebras, Operators, and Harmonic Analysis PDF Author: H. Garth Dales
Publisher: Cambridge University Press
ISBN: 9780521535847
Category : Mathematics
Languages : en
Pages : 338

Get Book Here

Book Description
Table of contents

Amenability

Amenability PDF Author: Alan L. T. Paterson
Publisher: American Mathematical Soc.
ISBN: 0821809857
Category : Mathematics
Languages : en
Pages : 474

Get Book Here

Book Description
The subject of amenability has its roots in the work of Lebesgue at the turn of the century. In the 1940s, the subject began to shift from finitely additive measures to means. This shift is of fundamental importance, for it makes the substantial resources of functional analysis and abstract harmonic analysis available to the study of amenability. The ubiquity of amenability ideas and the depth of the mathematics involved points to the fundamental importance of the subject. This book presents a comprehensive and coherent account of amenability as it has been developed in the large and varied literature during this century. The book has a broad appeal, for it presents an account of the subject based on harmonic and functional analysis. In addition, the analytic techniques should be of considerable interest to analysts in all areas. In addition, the book contains applications of amenability to a number of areas: combinatorial group theory, semigroup theory, statistics, differential geometry, Lie groups, ergodic theory, cohomology, and operator algebras. The main objectives of the book are to provide an introduction to the subject as a whole and to go into many of its topics in some depth. The book begins with an informal, nontechnical account of amenability from its origins in the work of Lebesgue. The initial chapters establish the basic theory of amenability and provide a detailed treatment of invariant, finitely additive measures (i.e., invariant means) on locally compact groups. The author then discusses amenability for Lie groups, "almost invariant" properties of certain subsets of an amenable group, amenability and ergodic theorems, polynomial growth, and invariant mean cardinalities. Also included are detailed discussions of the two most important achievements in amenability in the 1980s: the solutions to von Neumann's conjecture and the Banach-Ruziewicz Problem. The main prerequisites for this book are a sound understanding of undergraduate-level mathematics and a knowledge of abstract harmonic analysis and functional analysis. The book is suitable for use in graduate courses, and the lists of problems in each chapter may be useful as student exercises.

Banach Algebras and Automatic Continuity

Banach Algebras and Automatic Continuity PDF Author: Harold G. Dales
Publisher: Oxford University Press on Demand
ISBN: 9780198500131
Category : Mathematics
Languages : en
Pages : 907

Get Book Here

Book Description
Banach algebras combine algebraic and analytical aspects: it is the interplay of these structures that gives the subject its fascination. This volume expounds the general theory of Banach algebras, and shows how their topology is often determined by their algebraic structure: the central questions ask when homomorphisms and derivations from Banach algebras are automatically continuous, and seek canonical forms for these maps. The book synthesizes work over the last 20 years, and givesa definitive account; there are many new and unpublished results. The book describes many specific classes of Banach algebras, including function algebras, group algebras, algebras of operators, C*-algebras, and radical Banach algebras; it is a compendium of results on these examples. The subject interweaves algebra, functional analysis, and complex analysis, and has a dash of set theory and logic; the background in all these areas is fully explained. This volume is essential reading for anyone interested in any aspect of this vast subject.

Banach Algebras on Semigroups and on Their Compactifications

Banach Algebras on Semigroups and on Their Compactifications PDF Author: Harold G. Dales
Publisher: American Mathematical Soc.
ISBN: 0821847759
Category : Mathematics
Languages : en
Pages : 178

Get Book Here

Book Description
"Volume 205, number 966 (end of volume)."

Lectures on Amenability

Lectures on Amenability PDF Author: Volker Runde
Publisher: Springer
ISBN: 3540455604
Category : Mathematics
Languages : en
Pages : 302

Get Book Here

Book Description
The notion of amenability has its origins in the beginnings of modern measure theory: Does a finitely additive set function exist which is invariant under a certain group action? Since the 1940s, amenability has become an important concept in abstract harmonic analysis (or rather, more generally, in the theory of semitopological semigroups). In 1972, B.E. Johnson showed that the amenability of a locally compact group G can be characterized in terms of the Hochschild cohomology of its group algebra L^1(G): this initiated the theory of amenable Banach algebras. Since then, amenability has penetrated other branches of mathematics, such as von Neumann algebras, operator spaces, and even differential geometry. Lectures on Amenability introduces second year graduate students to this fascinating area of modern mathematics and leads them to a level from where they can go on to read original papers on the subject. Numerous exercises are interspersed in the text.